
Mixture-of-Recursions: Learning Dynamic Recursive
Depths for Adaptive Token-Level Computation
Sangmin Bae1,*, Yujin Kim1,*, Reza Bayat2,*,
Sungnyun Kim1, Jiyoun Ha3, Tal Schuster4, Adam Fisch4, Hrayr Harutyunyan5, Ziwei Ji4,
Aaron Courville2,6,† and Se-Young Yun1,†
1KAIST AI, 2Mila, 3Google Cloud, 4Google DeepMind, 5Google Research, 6Université de Montréal
*Equal Contribution, †Corresponding Authors

Abstract: Scaling language models unlocks impressive capabilities, but the accompanying computational
and memory demands make both training and deployment expensive. Existing efficiency efforts typically
target either parameter sharing or adaptive computation, leaving open the question of how to attain both
simultaneously. We introduce Mixture-of-Recursions (MoR), a unified framework that combines the two axes
of efficiency inside a single Recursive Transformer. MoR reuses a shared stack of layers across recursion steps
to achieve parameter efficiency, while lightweight routers enable adaptive token-level thinking by dynamically
assigning different recursion depths to individual tokens. This allows MoR to focus quadratic attention
computation only among tokens still active at a given recursion depth, further improving memory access
efficiency by selectively caching only their key-value pairs. Beyond these core mechanisms, we also propose a KV
sharing variant that reuses KV pairs from the first recursion, specifically designed to decrease prefill latency and
memory footprint. Across model scales ranging from 135M to 1.7B parameters, MoR forms a new Pareto frontier:
at equal training FLOPs and smaller model sizes, it significantly lowers validation perplexity and improves few-
shot accuracy, while delivering higher throughput compared with vanilla and existing recursive baselines. These
gains demonstrate that MoR is an effective path towards large-model quality without incurring large-model cost.

1. Introduction

Router

𝑔 = 0.7

Layer 1

Layer 2

Layer L−2

⋮ ⋮

𝑥!
Layer 0

Layer L−1

Recursion Block

Computed Skipped

Sequence Position

La
ye
r

People who feel comfortable defending their views---def
ensively confident---may also eventually change those
views and corresponding behaviors.⋯	⋯ Drugs August 26,

Figure 1: Overview of Mixture-of-Recursions (MoR). (Left) Each recursion step consists of a fixed stack of layers and a
router that determines whether each token should pass through or exit. This recursion block corresponds to the gray box in
the middle. (Middle) The full model structure, where the shared recursion step is applied up to 𝑁𝑟 times for each token
depending on the router decision. (Right) An example routing pattern showing token-wise recursion depth, where darker
cells indicate active computation through the recursion block. Below shows the number of recursion steps of each text
token, shown in colors: 1 , 2 , and 3 .

Scaling Transformer networks to hundreds of billions of parameters has unlocked impressive few-shot
generalization and reasoning abilities (Brown et al., 2020; Chowdhery et al., 2023; Llama Team, 2024; OpenAI,
2023; Gemini Team, 2024; DeepSeek-AI, 2024; Gemini Team, 2025). However, the accompanying memory

Correspondence to: {bsmn0223,yujin399,yunseyoung}@kaist.ac.kr, {reza.bayat,courvila}@mila.quebec.
Code is at https://github.com/raymin0223/mixture_of_recursions.
The Google co-authors performed only an advisory role in this paper.

ar
X

iv
:2

50
7.

10
52

4v
2

 [
cs

.C
L

]
 2

1
Ju

l 2
02

5

mailto:\{bsmn0223,yujin399,yunseyoung\}@kaist.ac.kr
mailto:\{reza.bayat,courvila\}@mila.quebec
https://github.com/raymin0223/mixture_of_recursions
https://arxiv.org/abs/2507.10524v2

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

footprint and computational requirements make both training and deployment outside hyperscale data centers
challenging (Patterson et al., 2021; Momeni et al., 2024). This has motivated researchers to seek alternative
“efficient” designs (Tay et al., 2022; Wan et al., 2023). Among the different axes of efficiency, parameter
efficiency (Dehghani et al., 2018; Bae et al., 2024; Shazeer et al., 2017; Fedus et al., 2022; LeCun et al.,
1989)—reducing or sharing model weights—and adaptive computation (Raposo et al., 2024; Schuster et al.,
2022; Fedus et al., 2022; Leviathan et al., 2023)—spending more compute only when it is needed—are
promising, actively studied research directions.
One proven route to parameter efficiency is layer tying, in which a shared set of weights is reused across

multiple layers (Dehghani et al., 2018; Lan et al., 2019; Takase and Kiyono, 2021; Gholami and Omar, 2023;
Bae et al., 2024). For adaptive computation, a common approach is early-exiting, which dynamically allocates
compute by exiting earlier in the network when predicting simpler tokens (Elhoushi et al., 2024; Schuster et al.,
2022; Elbayad et al., 2020; Bae et al., 2023). Despite the progress achieved along each of these individual
efficiency axes, an architecture that effectively unifies both parameter efficiency and adaptive computation is
still missing. Recursive Transformers (Bae et al., 2024; Fan et al., 2024; Giannou et al., 2023; Yang et al., 2023;
Saunshi et al., 2025; Geiping et al., 2025; Aleksandrov et al., 2025), models that repeatedly apply the same set
of shared layers multiple times, offer a strong foundation due to their built-in weight sharing. However, prior
attempts at dynamic recursion have often been constrained by practical hurdles, such as requiring additional
specialized training procedures or facing challenges in efficient deployment. This has led most approaches to
still default to a simpler fixed-depth recursion, which applies the same amount of computation to every token
and is thus incapable of delivering truly adaptive token-level compute allocation.
In this work, we introduce Mixture-of-Recursions (MoR), a unified framework that fully leverages the

potential of Recursive Transformers (see Figure 1). MoR trains lightweight routers end-to-end to assign
token-specific recursion depths: it decides how many times a shared parameter block is applied to each token
according to its required depth of “thinking”, thereby directing computation to where it is most needed. This
dynamic, token-level recursion inherently facilitates recursion-wise key–value (KV) caching, selectively storing
and retrieving key–value pairs corresponding to each token’s assigned recursion depth. This targeted caching
strategy reduces memory traffic, thereby improving throughput without relying on post-hoc modifications.
Therefore, MoR simultaneously (i) ties weights to cut parameters, (ii) routes tokens to cut redundant FLOPs,
and (iii) caches key-values recursion-wise to cut memory traffic—all inside a single architecture.
Conceptually, MoR provides a pre-training framework for latent space reasoning—performing non-verbal

thinking by iteratively applying a single parameter block (Hao et al., 2024; Geiping et al., 2025; Goyal et al.,
2023). However, unlike approaches that deliberate on augmented continuous prompts before generation (Liu
et al., 2024b; Goyal et al., 2023; Hao et al., 2024; Shen et al., 2025), MoR enables this latent thinking directly
during the decoding of each token (Zelikman et al., 2024). Furthermore, routing mechanism facilitates adaptive
reasoning along the model’s vertical axis1, moving beyond the uniform, fixed thinking depth common in prior
work (Geiping et al., 2025; Tack et al., 2025). In essence, MoR enables models to efficiently adjust their
thinking depth on a per-token basis, unifying parameter efficiency with adaptive computation.

Contributions. In summary, our key contributions in this paper are as follows.
• Unified framework for efficient languagemodeling: We presentMixture-of-Recursions (MoR), the first archi-
tecture to unify efficiency paradigms—parameter sharing (§2.1), token-level adaptive thinking depth (§2.2.1),
and memory-efficient KV caching (§2.2.2)—within a single framework.

• Dynamic recursion routing: We introduce a router trained from scratch to assign dynamic per-token
recursion depths. This aligns training with inference-time behavior and eliminates the need for costly,
performance-degrading post-hoc routing stages used in conventional early-exit methods.

• Extensive empirical validation: Across models from 135M to 1.7B parameters2 under equal compute
budgets, MoR establishes a new Pareto frontier by improving validation loss and few-shot accuracy relative
to vanilla and recursive baselines (§3.1, §3.2).

• Efficient architecture: MoR dramatically reduces training FLOPs by selectively engaging only essential
sequences in attention operations. Simultaneously, reduction in KV cache sizes leads to enhanced inference
throughput itself, further boosted by continuous depth-wise batching (§3.3).

1While this thinking occurs along the depth axis, it is analogous to generating continuous thoughts along the horizontal sequence axis.
2These are base model sizes, while MoR models have fewer unique parameters due to parameter sharing.

2

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

Table 1: Parameter-sharing strategies in Recursive Transformers. This table shows Cycle and Middle-Cycle schemes with
cyclic layer reuse, where Middle-Cycle retains unique first and last layers.

Cycle Strategy Middle-Cycle Strategy

Layers Equation Figure Equation Figure
Last – 𝑓

(︀
h𝐿−1
𝑡 ; Φ𝐿−1

)︀
Recursion 𝑓

(︁
hℓ
𝑡; Φ

′
ℓ mod (𝐿/𝑁𝑟)

)︁
Layer 0

Layer 1 𝑓
(︁
hℓ
𝑡; Φ

′
(ℓ−1 mod ((𝐿−2)/𝑁𝑟))+1

)︁
Layer 1

Layer 2

Layer 0

Layer 3

First – 𝑓
(︀
h0
𝑡 ; Φ0

)︀

2. Method

2.1. Preliminary

Recursive Transformers. The standard Transformer (Vaswani et al., 2017) constructs token representations
through a stack of 𝐿 unique layers, each with a self-attention and a feed-forward network. At time step 𝑡,
the hidden state ℎ evolves as: hℓ+1

𝑡 = 𝑓
(︀
hℓ
𝑡; Φℓ

)︀
, where ℓ = 0, . . . , 𝐿−1 and Φℓ represents the parameters of

the ℓ-th layer. Recursive Transformers (Bae et al., 2024; Fan et al., 2024; Giannou et al., 2023; Yang et al.,
2023; Saunshi et al., 2025) aim to reduce parameter count by reusing layers across depth. Instead of having
𝐿 distinct sets of weights, they partition the model into 𝑁𝑟 recursion blocks, where each block uses a shared
pool of parameters Φ′. This design allows for more computation (by increasing the effective network depth)
without increasing parameter size.

Parameter-sharing strategies. We examine four parameter-sharing strategies: Cycle, Sequence, and their
variantsMiddle-Cycle andMiddle-Sequence. Table 1 summarizes two main designs, and the full list is provided in
Table 5 in the Appendix. In Cycle sharing, recursion blocks are reused cyclically. For example, consider an original
non-recursive model with 𝐿=9 layers and its recursive counterpart using 𝑁𝑟=3 recursions. Under the “Cycle”
strategy, the layers are shared and unrolled as [(0, 1, 2), (0, 1, 2), (0, 1, 2)]. In “Sequence” sharing, each recursion
block reuses the same layer consecutively before moving to the next, resulting in [(0, 0, 0), (1, 1, 1), (2, 2, 2)]
for the same configuration. Both have the same effective number of layers when unrolled (𝐿=9), but with a
different order. Furthermore, the “Middle” variants preserve full-capacity parameters at the first and last layers
(Φ0 and Φ𝐿−1), while sharing weights among the intermediate layers.

Enhanced training and inference efficiency in recursive models. Parameter sharing strategies can reduce
the number of unique trainable parameters by a factor of the recursion number, effectively amortizing the
memory footprint of the model. From a distributed training perspective, this becomes highly efficient when
using Fully Sharded Data Parallel (FSDP) (Zhao et al., 2023). While a single all-gather operation would only
support one iteration previously (i.e., 1 iter/gather), a recursive model reuses the same gathered parameters
across all recursive steps (i.e., 𝑁𝑟 iter/gather). Furthermore, recursive architectures enable a novel inference
paradigm, continuous depth-wise batching (Bae et al., 2024; Hooper et al., 2023). This technique allows tokens
at different stages to be grouped into a single batch, as they all utilize the same block of parameters. This can
eliminate the bubbles—idle periods spent waiting for other samples to complete—thereby leading to significant
throughput gains.

Limitations in prior works. Although model parameters are tied, the distinct KV caches are typically used
for each depth. This design fails to reduce the cache sizes, meaning the high retrieval latency still remains a
severe inference bottleneck. Moreover, most existing recursive models simply apply a fixed recursion depth to
all tokens, ignoring the varying complexity. While post-hoc methods like early-exiting methods can introduce
some adaptivity, they often require separate training phases that can degrade performance (Schuster et al.,
2022; Elhoushi et al., 2024; Bae et al., 2024). Ideally, the recursion depth should be learned dynamically during
pretraining, allowing the model to adapt its computational path to each token’s difficulty in a data-driven
manner. However, such dynamic paths introduce a new challenge: exited tokens will have missing KV pairs at
subsequent recursion depths. Addressing this would require a parallel decoding mechanism (Bae et al., 2023;
Elhoushi et al., 2024; Kim et al., 2023b) to efficiently compute the actual KV pairs, but this requires separate,
complex engineering and complicates the system.

3

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

Router

Router

Router

Loop 3

Loop 2

Loop 1

(a) Expert-choice routing

Router

Loop 1 Loop 1 Loop 1

Loop 2 Loop 2

Loop 3

(b) Token-choice routing

Q
ue

ry

Key

Q
ue

ry

(c) Caching mechanism

Figure 2: Architectural components of Mixture-of-Recursions (MoR). (a) Expert-choice routing: At each recursion step,
a router selects top-𝑘 tokens to continue, progressively narrowing the set of active tokens with depth. (b) Token-choice
routing: Each token is assigned a fixed recursion step at the outset via a single routing decision, defining its complete
compute path through the model. (c) KV caching strategies: Each square in the matrix represents whether a token (row)
attends to another token’s cached key (column). In “recursion-wise KV caching” (Top), only the keys of currently selected
(non-dropped) tokens at each recursion step are cached (blue), and attention is restricted only to these entries. In
“recursive KV sharing” (Bottom), all keys of previous tokens are cached at the first recursion step (purple) and shared
across subsequent recursion steps for attention operations.

2.2. Mixture-of-Recursions

We propose Mixture-of-Recursions (MoR)—a framework that dynamically adjusts recursion step for each token
during pretraining and inference. The core of MoR lies in two components: a routing mechanism that assigns
token-specific recursion steps to adaptively concentrate computation on more challenging tokens, and a KV
caching strategy that defines how KV pairs are stored and selectively utilized for attention at each recursive step.

2.2.1. Routing Strategies: Expert-choice vs. Token-choice

Expert-choice routing. (Figure 2a) Inspired by top-𝑘 gating in MoD models (Raposo et al., 2024), in expert-
choice routing, each recursion depth becomes an expert and selects their preferred top-𝑘 tokens (e.g., for𝑁𝑟 = 3,
we have three experts: Expert 1 applies the first recursion step, Expert 2 applies the second recursion step, and
so on). At each recursion step 𝑟, the corresponding router uses the hidden state ℋ𝑟

𝑡 (input to the 𝑟-th recursion
block) and its routing parameters 𝜃𝑟 to compute a scalar score 𝑔𝑟𝑡 = 𝒢(𝜃⊤𝑟 ℋ𝑟

𝑡) for token 𝑡. Here, 𝒢 represents an
activation function like sigmoid or tanh. Then, the top-𝑘 tokens are selected to pass through the recursion block:

ℋ𝑟+1
𝑡 =

{︃
𝑔𝑟𝑡 𝑓(ℋ𝑟

𝑡 , Φ
′) +ℋ𝑟

𝑡 , if 𝑔𝑟𝑡 > 𝑃𝛽(𝐺
𝑟)

ℋ𝑟
𝑡 , otherwise (2.1)

where 𝑃𝛽(𝐺
𝑟) is the 𝛽-percentile threshold over all scores at recursion step 𝑟.

To ensure coherent progression through steps, we adopt hierarchical filtering: only tokens selected at
recursion step 𝑟 can be re-evaluated at 𝑟+1. This simulates early-exit behavior while learning from scratch. As
deeper layers tend to encode increasingly abstract and sparse information (Li et al., 2022; Yang et al., 2024;
Nawrot et al., 2024), this mechanism prioritizes computation for only the most demanding tokens.

Token-choice routing. (Figure 2b) Unlike expert-choice, where token selection is made at each recursion
step, token-choice commits each token to a full sequence of recursion blocks from the start. Formally, given
the hidden state ℋ1

𝑡 (in Middle-Cycle strategy, ℋ1
𝑡 = ℎ1

𝑡), the router computes a non-linear function (softmax
or sigmoid) over experts: 𝑔𝑡 = 𝒢(𝜃⊤𝑟 ℋ1

𝑡), where 𝑔𝑗𝑡 denotes the routing score for expert 𝑗 ∈ {1, . . . , 𝑁𝑟}. The
token is assigned to expert 𝑖 = argmax𝑗 𝑔

𝑗
𝑡 (top-1 gating), which corresponds to sequentially applying the

recursion 𝑖 times. The hidden state is then updated recursively as:

ℋ𝑟+1
𝑡 =

{︃
𝑔𝑟𝑡 𝑓(ℋ𝑟

𝑡 , Φ
′) +ℋ1

𝑡 , if 𝑟 = 𝑖

𝑔𝑟𝑡 𝑓(ℋ𝑟
𝑡 , Φ

′), otherwise (2.2)

4

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

Table 2: Comparison of routing strategies and key-value caching strategies. (Left) Summary of two routing strategies:
expert-choice and token-choice, highlighting their pros, cons, and mitigating solutions from previous works (Raposo et al.,
2024; Wang et al., 2024; Zoph et al., 2022). (Right) Relative cost efficiency of caching strategies against a vanilla Transformer
(normalized to 1). Here, 𝑁𝑟 denotes the number of recursions, and 𝑘 (𝑘 < 𝑁ctx) denotes the number of selected tokens
per layer. KV cache memory and IO are measured across the entire model, whereas attention FLOPs are reported per layer.

Expert-choice Token-choice

Pros Static compute budget No leakage
Cons Causality violation Load imbalance
⌞Sol AuxRout, Aux Loss Bal Loss, Loss-free

Recursion-wiseCaching Recursive Sharing

KVMemory (𝑁𝑟 + 1)/2𝑁𝑟 1/𝑁𝑟

KVCache IO (𝑁𝑟 + 1)/2𝑁𝑟 1
Attn FLOPs 𝑘2/𝑁2

ctx 𝑘/𝑁ctx

To compare routing strategies under equal compute, we align the token allocation budgets of expert-choice
with that of token-choice. Specifically, we calibrate token capacity (i.e., top-k) of expert-choice to match
the expected token distribution of token-choice routing with perfect load balancing. In perfectly balanced
token-choice, each token is assigned to recursion depth 𝑖 ∈ {1, . . . , 𝑁𝑟} with equal probability 1/𝑁𝑟. Thus,
recursion step 𝑗 processes a fraction (𝑁𝑟−𝑗+1)/𝑁𝑟 of the tokens. For example, when𝑁𝑟 = 3, recursion steps 1,
2, and 3 handle {3/3, 2/3, 1/3} of tokens, respectively. Therefore, we apply this same fractional allocation in the
top-𝑘 selection of the expert-choice routing (i.e., 𝑘 is sequenced like 𝑁𝑟/𝑁𝑟, · · · , 1/𝑁𝑟 over 𝑁𝑟 recursion steps).

Strengths and limitations. (Table 2–Left) Although expert-choice routing guarantees perfect load balancing
with static top-𝑘 selection, it suffers from information leakage (Zhou et al., 2022; Wang et al., 2024; Raposo
et al., 2024). This violation of causality during training forces to exploit an auxiliary router or a regularization
loss (Zhou et al., 2022; Raposo et al., 2024), aiming to precisely detect top-𝑘 tokens at inference without
access to future token information. Meanwhile, token-choice is free from such leakage, but typically requires
a balancing loss or loss-free algorithms (Wang et al., 2024; Fedus et al., 2022; Zoph et al., 2022) due to its
inherent load balancing challenges. We explore each of these components for MoR in further detail (§4.2).

2.2.2. KV Caching Strategies: Recursion-wise Caching vs. Recursive Sharing

Dynamic-depth models often struggle with KV cache consistency during autoregressive decoding. When a token
exits early, its corresponding keys and values in deeper layers will be missing, which can be crucial information
for subsequent tokens. Some methods attempt to reuse stale entries (Schuster et al., 2022) or run parallel
decoding (Bae et al., 2023), but these solutions still introduce overhead and complexity. To this end, we design
and explore two KV cache strategies tailored to MoR models: recursion-wise caching and recursive sharing.

Recursion-wise KV caching. (Figure 2c–Top) Inspired by Raposo et al. (2024), we cache KV pairs selectively:
only tokens routed to a given recursion step store their key–value entries at that level. Thereby, the KV cache
size at each recursion depth is determined exactly by the capacity factor in expert-choice, or according to
actual balancing ratios in token-choice. Attention is then restricted to those locally cached tokens. This design
promotes block-local computation, which improves memory efficiency and reduces IO demands.

Recursive KV sharing. (Figure 2c–Bottom) A key design choice for our MoR model is that all tokens traverse
at least the first recursion block3. We leverage this by caching KV pairs exclusively at this initial step and reusing
them across all subsequent recursions. Therefore, the query length might get shorter at each recursion depth
based on the selection capacity, but the key and value lengths will consistently maintain the full sequence. This
ensures that all tokens can access to past context without recomputation, despite any distribution mismatch.

Strengths and limitations. (Table 2–Right) Recursion-wise caching cuts KV memory and IO to approximately
(𝑁𝑟 +1)/2𝑁𝑟 times across the entire model (when assuming capacity factors follow a sequence like 𝑁𝑟/𝑁𝑟, · · · ,
1/𝑁𝑟 over𝑁𝑟 recursion steps). It also reduces per-layer attention FLOPs to a factor of (𝑘/𝑁ctx)2 of those in vanilla
models, resulting in substantially improved efficiency for both training and inference phases. Meanwhile, recur-
sive sharing can yield maximal memory savings by globally reusing context. Specifically, significant speedups
can be achieved by skipping KV projection and prefill operations at shared depths (Sun et al., 2024). However,
attention FLOPs only decrease by a factor of 𝑘/𝑁ctx, and high volume of KV IO still leads to a decoding bottleneck.

3Though this is not a strict requirement of the MoR framework itself.

5

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

Table 3: Comparison of MoR, Recursive, and Vanilla Transformers under both fixed FLOPs (16.5e18) and token (20B)
settings. All models are trained on FineWeb-Edu and evaluated by validation negative log-likelihood (NLL) and few-shot
accuracy. For the isoFLOP rows, the number of training tokens (𝑁𝑡𝑜𝑘) varies by model efficiency. For the fixed-token rows,
we report the effective FLOPs consumed. For the model sizes, we report non-embedding parameter counts. For the KV
mechanisms, we distinguish between Cache (recursion-wise caching) and Share (recursive sharing). †In recursive models,
all tokens go through fixed recursion depths (𝑁𝑟), instead of adaptive depths.

MoR Recursion Pretrain NLL ↓ Few-shot Accuracy ↑

Models Type KV Share 𝑁𝑅 Param FLOPs 𝑁𝑡𝑜𝑘 FineWeb LD HS PQ WG ARC MMLU Avg
Vanilla - - - - 315M 16.5 20B 2.7824 32.0 37.8 65.6 50.5 39.6 28.0 42.3

Recursive†
- - M-Cyc 2 167M 16.5 20B 2.8079 31.0 37.1 66.7 52.3 40.8 27.5 42.6
- - M-Cyc 3 118M 16.5 20B 2.8466 29.8 35.9 65.0 52.3 39.0 27.2 41.5
- - M-Cyc 4 98M 16.5 19B 2.8781 28.2 35.4 65.5 52.5 38.0 26.8 41.0

Expert Cache M-Cyc 2 167M 16.5 27B 2.7511 34.4 39.3 65.7 51.2 39.6 28.1 43.1
Expert Cache M-Cyc 3 118M 16.5 30B 2.7925 33.1 37.9 66.9 52.1 38.3 27.4 42.6
Expert Cache M-Cyc 4 98M 16.5 30B 2.8204 30.1 37.3 65.0 51.1 38.9 27.4 41.6
Expert Cache M-Cyc 2 167M 12.3 20B 2.7749 33.2 38.3 65.2 52.6 40.1 28.1 42.9
Expert Cache M-Cyc 3 118M 11.0 20B 2.8246 31.9 37.0 65.7 50.5 38.3 27.4 41.8
Expert Cache M-Cyc 4 98M 11.0 20B 2.8519 30.2 36.5 64.3 52.3 38.6 27.2 41.5
Token Cache M-Cyc 3 118M 16.5 30B 2.9163 27.6 34.1 63.8 50.6 37.4 26.8 40.0

MoR (ours)

Expert Share M-Cyc 3 118M 16.5 31B 2.7983 31.7 37.2 65.1 51.0 39.0 27.1 41.9

3. Experiments

We pretrain our models from scratch using a Llama-based Transformer architecture4 (Llama Team, 2024),
referring to the configurations of SmolLM open-source models (Allal et al., 2024), on a deduplicated subset of
the FineWeb-Edu dataset (Penedo et al., 2024) in SmolLM-Corpus (Ben Allal et al., 2024). We evaluate the
models on validation set of FineWeb-edu and six few-shot benchmarks (Gao et al., 2024). Detailed training
and evaluation procedures, as well as throughput measurement protocols, are described in Appendix B.

3.1. Main Results

MoR outperforms baselines with fewer parameters under equal train compute. Under an equal training
budget of 16.5e18 FLOPs, we compared our Mixture-of-Recursions (MoR) model against both Vanilla and
Recursive Transformers. As shown in Table 3, the MoR model, using an expert-choice router and two recursions,
achieves a lower validation loss and surpasses the vanilla baseline in average few-shot accuracy (43.1% vs.
42.3%). Remarkably, this superior performance is achieved despite using nearly 50% fewer parameters. This is
attributed to MoR’s higher computational efficiency, which allows it to process more training tokens within the
same FLOPs budget. Furthermore, as𝑁𝑟 increases to 3 or 4, MoRmaintains its competitive accuracy, consistently
outperforming the recursive baselines while remaining within a tight margin of the full-capacity vanilla model.

MoR outperforms baselines with less compute at equal data. To isolate architectural differences, we
analyze performance under a fixed number of training tokens (20B). Specifically, our MoR model with 𝑁𝑟 = 2
outperforms both vanilla and recursive baselines—achieving lower validation loss and higher accuracy—despite
using 25% fewer training FLOPs. This theoretical efficiency translates into significant practical gains: compared
to the vanilla baseline, our model reduces training time by 19% and cuts peak memory usage by 25%. These
improvements stem from our hierarchical filtering and recursion-wise attention mechanism, which shortens
sequence lengths to achieve a superior compute-accuracy trade-off, even during pretraining.

MoR performance varies with routing and caching strategies. We also evaluate a few design variants
within MoR framework, specifically with 𝑁𝑟 = 3 that is lightweight and still comparable with Vanilla. In this
case, using token-choice routing yields lower performance (40.0%) compared to expert-choice routing (42.6%),
indicating that routing granularity plays a pivotal role in model performance. Additionally, applying KV cache
sharing slightly reduces performance compared to independent caching, while providing improved memory
efficiency. This trade-off remains favorable for practical deployment when memory usage is a key concern.

4Experiments on Llama are conducted without direction or involvement from Google advisors.
6

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

Vanilla Recursive MoR (ours)

Va
lid

at
io

n
Lo

ss

2.8

3.0

3.2

Compute Budget (×1018)
2.0 5.0 16.5

(a) 135M-based model

2.7

2.9

3.1

3.3

3.5

Compute Budget (×1018)
2.0 5.0 16.5

(b) 360M-based model

2.7

3.1

3.5

3.9

Compute Budget (×1018)
2.0 5.0 16.5

(c) 730M-based model

2.7

3.5

4.3

5.1

Compute Budget (×1018)
2.0 5.0 16.5

(d) 1.7B-based model

Figure 3: Validation loss across different compute budgets across four model sizes: 135M, 360M, 730M, and 1.7B
parameters. For MoR models, we use expert-choice routing and recursion-wise caching. MoR consistently outperforms
recursive baselines and matches or exceeds the standard Transformers at larger scales, despite using significantly fewer
parameters (approximately one-third due to layer tying with 𝑁𝑅 = 3).

3.2. IsoFLOP Analysis

A core criterion for evaluating a new model architectural design is whether performance continues to improve
as model and compute scales grow (Kaplan et al., 2020). Therefore, we evaluate MoR against both Vanilla
and Recursive Transformers across a wide range of model sizes and computational budgets to show that it
maintains competitive or superior predictive performance as the scale increases.

Experimental Setup. We experiment with four scales—135M, 360M, 730M, and 1.7B parameters—fixing
the number of recursions to three for both Recursive and MoR configurations, resulting in roughly one-third the
number of unique parameters. Each model is pretrained under three FLOPs budgets: 2e18, 5e18, and 16.5e18.

MoR is a scalable and parameter-efficient architecture. As shown in Figure 3, MoR consistently outperforms
recursive baselines across all model sizes and compute budgets. While it underperforms the vanilla model at the
smallest model size (135M)—likely due to a recursive capacity bottleneck—this gap closes rapidly at scale. For
>360M parameters, MoR not only matches but often exceeds the Vanilla Transformer, particularly under low and
mid-range budgets. Overall, these results highlight that MoR is a scalable and efficient alternative to standard
Transformers. It achieves strong validation performance with significantly lower parameter counts, making it a
strong candidate for both pretraining and large-scale deployment. Further details are presented in Appendix C.

3.3. Inference Throughput Evaluation

As a parameter-shared architecture, MoR can leverage continuous depth-wise batching (Bae et al., 2024) to
dramatically boost inference throughput compared to Vanilla Transformers. This maintains high and consistent
GPU utilization by immediately replacing completed sequences with incoming tokens during decoding. The
early-exiting mechanism in MoR further eliminates bubbles in the computational batch.

Experimental Setup. We measure throughput for 360M scale-based MoR models with recursion depths of
2, 3, and 4, trained under a 16.5e18 FLOPs budget. Throughput (tokens/second) is measured based on the
generation time for tokens per sample, where the number of tokens is sampled from a normal distribution with
a mean of 256, starting without any input prefix. We examine two batching configurations: a fixed batch size
of 32 and a (relative) maximum batch size derived by multiplying 32 by the ratio of the maximum batch sizes
of vanilla and MoR models. Further details on the experimental setup are provided in Appendix D.

MoR boosts inference throughput with continuous depth-wise batching. In Figure 4a, across both batch
settings, all MoR variants outperform the vanilla baseline, which even leverages continuous sequence-wise
batching (Yu et al., 2022; Kwon et al., 2023). Increasing recursion depth leads to more tokens exiting early
and a further reduction in KV cache usage. This, in turn, boosts throughput significantly (e.g., MoR-4 achieves
up to a 2.06× speedup with 𝐵 = Max). While there’s a slight performance degradation, it can be a favorable
trade-off given the substantial throughput gain. These results support that the integration of the depth-wise
batching paradigm with early-exiting can significantly accelerate MoR’s actual deployment throughput.

7

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

B = 32
B = Max
Vanilla
MoR-2
MoR-3
MoR-4

×1.23

×1.33

×1.42

×1.60

×1.95

×2.06

Lo
g

Li
ke

lih
oo

d

-2.80

-2.75

Throughput (×)
1.0 1.5 2.0

(a) Pareto frontier of throughput

Seq
M-Seq
Cyc
M-Cyc

N
eg

. L
og

 L
ik

el
ih

oo
d

2.7

2.8

2.9

3.0

3.1

3.2

3.3

135M 360M

(b) Sharing strategy

KV Sharing ✗
KV Sharing ✓

N
eg

. L
og

 L
ik

el
ih

oo
d

2.7

2.8

2.9

3.0

Vanilla Rec MoR-E MoR-T

(c) KV cache sharing

Figure 4: (a) Pareto frontier of inference throughput and log-likehood for MoR and Vanilla Transformer under fixed and
maximum batching scenarios. Setting details are in Appendix D. (b) Negative log-likelihood (NLL) of Recursive Transformers
with 𝑁𝑟 = 3 across four different parameter-sharing strategies. We pretrained the models on 10 billion tokens. The dashed
red and black lines denote the full-size Vanilla Transformer and parameter-matched vanilla models (approximately one-third
scales), respectively. (c) NLL performance comparison across four different architectures with KV sharing. For MoR, green
(disabled) and blue (enabled) refer to recursion-wise KV caching and recursive KV sharing strategies. MoR-E and MoR-T de-
notes expert-choice and token-choice MoR, respectively. All models are based on 360M scale and trained on 10 billion tokens.

4. Ablation Studies

4.1. Parameter Sharing Strategies

Middle-Cycle is the most effective parameter sharing strategy. As discussed in §2.1, parameter sharing is
a key component of Recursive Transformers and MoR. To identify the most effective sharing configuration, we
empirically compare four aforementioned strategies: Cycle, Sequence, Middle-Cycle, and Middle-Sequence. We
evaluate each strategy on Recursive Transformers based on 135M and 360M model sizes. As shown in Figure 4b,
“Middle-Cycle” consistently achieves the lowest validation loss, and its superiority is further confirmed by the
detailed results in Appendix E. Based on these findings, we adopt the “Middle-Cycle” configuration for all
subsequent MoR and Recursive Transformers presented in this paper.

4.2. Routing Strategies

We conduct an extensive ablation study to understand the impact of various design choices within the expert-
choice and token-choice routing schemes in our MoR framework. Detailed results are summarized in Appendix F.

In expert-choice routing, auxiliary loss and linear router yield the best performance. For the expert-choice
routing setup (Left of Table 4), we evaluate several design aspects: solution to mitigate causality violation
(auxiliary router vs. auxiliary loss), normalization functions (sigmoid vs. tanh), router architectures (MLP,
Linear, or Wide-MLP), and the impact of an auxiliary z-loss (Zoph et al., 2022). To assess how well the router
performs dynamic allocation, we measure the proportion of “dead” tokens—those never selected by the final
recursion in a batch—on the validation dataset. Our key findings are as follows: First, using an auxiliary
loss is more effective for inference-time behavior than training a separate auxiliary router. Second, a sigmoid
normalization function and a simple linear router architecture yield the best performance. Finally, the auxiliary
z-loss has a negligible impact on accuracy, though it does slightly reduce the proportion of dead tokens.

In token-choice routing, balancing loss yields stable and accurate routing. For token-choice routing
(Right of Table 4), we follow common MoE practices and enable z-loss by default. We compare two balancing
strategies: using a balancing loss and training in a loss-free manner using router bias. While both approaches
achieve similar log-probability and few-shot accuracy, the explicit balancing loss yields a significantly lower
MaxVio (Wang et al., 2024) in our MoR architectures, making it the preferable choice for stable routing. However,
despite this, the model often struggles to balance loads among its heterogeneous experts, even for nearly half
of the training steps. Softmax activation with an MLP router performs best, and removing z-loss—though we
add back with a very small coefficient in the final design—results in higher performance and routing stability.

8

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

Table 4: Ablation results for expert-choice (Left) and token-choice (Right) routers with various design choices. We use MoR
models that apply three recursions to a 360M model with recursion-wise caching. Model performance is measured by NLL
and average few-shot accuracy. We evaluate router metrics—dead token ratio (for expert-choice) and MaxVio (for token-
choice)—on the validation set. The dead token ratio denotes the proportion of tokens that remain unselected during the last
recursion step, measured on 500 samples, each with 2K sequence length. The selected design choice is highlighted in gray.

Expert-choice Router Performance (↓ / ↓ / ↑)

Sampling Func Arch z-loss Dead NLL Few-shot
AuxRout 𝜎 MLP ✗ 0.0 2.8893 39.4
AuxRout tanh MLP ✗ 66.7 2.8720 36.2
Aux Loss 𝜎 MLP ✗ 0.0 2.8816 40.0
Aux Loss tanh MLP ✗ 0.0 2.9933 38.8
Aux Loss 𝜎 Linear ✗ 0.1 2.8667 40.1
Aux Loss 𝜎 W-MLP ✗ 0.4 2.8716 39.4
Aux Loss 𝜎 Linear ✓ 0.0 2.8824 40.0

Token-choice Router Performance (↓ / ↓ / ↑)

Balancing Func Arch z-loss M-Vio NLL Few-shot
Loss (0.1) soft MLP ✓ 0.200 3.0239 38.5
Loss (0.01) soft MLP ✓ 0.682 2.9118 39.4
Loss-free soft MLP ✓ 0.852 2.9081 39.4
Loss-free 𝜎 MLP ✓ 1.281 3.0188 37.6
Loss (0.1) soft Linear ✓ 0.492 2.9974 38.4
Loss (0.1) soft W-MLP ✓ 0.384 3.0293 38.8
Loss (0.1) soft Linear ✗ 0.266 2.9358 39.1

4.3. KV Caching Strategies

KV sharing robustly works even in parameter-shared architectures. In Figure 4c, we first investigate the
effect of KV sharing in Vanilla and Recursive Transformers. As consistent with prior works (Brandon et al.,
2024; Wu and Tu, 2024; Sun et al., 2024), if we pretrain models from the scratch, KV sharing does not often
compromise performance due to the greater parameter flexibility. Surprisingly, the Recursive Transformer
remains relatively robust to KV sharing, despite its reduced degrees of freedom. We found evidence for this
by decomposing the KV pairs at each recursion depth into their magnitude and direction. As detailed in
Appendix G, depths that share parameters exhibit highly consistent magnitude patterns and high cosine
similarity, providing a clear justification for why KV sharing results in only a slight performance drop.

KV sharing degrades expert-choice but benefits token-choice routing in MoR. We compare recursion-wise
KV caching and recursive KV sharing mechanisms in our MoR framework. We observe that while recursive
KV sharing offers the advantages of reduced memory footprint and overall FLOPs5, it leads to quite large
performance degradation in expert-choice routing under a fixed token setting. This suggest that exclusively
updating and attending to the tokens active in that recursion depth may be more beneficial. Conversely, MoR
with token-choice routing could benefit from KV sharing, where its weaker, inaccurate routing decisions can be
complemented by the additional contextual information provided by shared KV pairs.

5. Analysis

5.1. Compute-optimal Scaling Analysis

MoR scaling favors model size over training length under isoFLOPs. As illustrated in Figure 5a, MoR ex-
hibits a distinct compute-optimal scaling behavior compared to baselines under isoFLOPs constraints. The flatter
slope of MoR’s optimal path (a line connecting stars) indicates that it benefits more significantly from increases in
parameter count (i.e., less data-hungry). This is likely because the performance of the shared parameter block it-
self becomes important, even more than feeding in additional data. Therefore, the optimal scaling policy for MoR
models favors allocating resources to increasing model capacity by using larger models trained for shorter steps.

5.2. Routing Analysis

The allocation of recursion depth reflects token semantic importance. In the Right of Figure 1, we illustrate
a qualitative example of token-specific recursion depths. The first token “People” or content-rich tokens such as
“-ensively confident” and “Drugs” pass through three recursion steps, while function words like “and”, “---”, and
“∖n” traverse two. In contrast, words of moderate semantic importance typically undergo only a single recursion.
This pattern indicates that recursion depth allocation aligns closely with the semantic importance of each token.

5Although attention FLOPs increase by𝑁ctx/𝑘 than recursion-wise KV caching, reduced KV projection FLOPs lead to an overall reduction.
9

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

Vanilla
Recursive
MoR (ours)

Va
lid

at
io

n
Lo

ss

2.7

2.9

3.1

3.3

Model Size (M)
100 1000

(a) Compute-optimal scaling

Selected Unselected

N
or

m
al

iz
ed

 C
ou

nt
s

0.0

0.2

0.4

0.6

0.8

1.0

Rec #1
0.0 0.5 1.0

Rec #2
0.0 0.5 1.0

Rec #3
0.0 0.5 1.0

(b) Learned router scores

Loop 1
Loop 2
Loop 3
Loop 4

Lo
g

Li
ke

lih
oo

d

-3.2

-3.1

-3.0

-2.9

-2.8

-2.7

Models (Max Recursion)
MoR-2 MoR-3 MoR-4

(c) Test-time scaling

Figure 5: (a) Compute-optimal scaling analysis for three model architectures. Each star indicates the optimal model size
for a given compute budget. We visualize the results in §3.2 by fitting polynomial functions for each architecture and FLOPs
budget, and derive the optimal points from these fits. (b) Distribution of router outputs for selected and unselected tokens
at each recursion step. As an example, a 360M size-based MoR model with 𝑁𝑟 = 3, expert-choice router with auxiliary loss,
and recursion-wise caching, is used. (c) Test-time scaling analysis illustrating the cumulative log-likelihood improvement
with increasing recursion depth, measured over 500 samples. As we increase𝑁𝑟 based on a 360M model size, the number of
unique parameters in MoR decreases, resulting in a gradual decline in overall performance (i.e., a decrease in log-likelihood).
All models are trained by an expert-choice router with auxiliary loss and a recursion-wise caching mechanism.

Expert-choice router with auxiliary loss perfectly separates selected from unselected tokens. Figure 5b
visualizes one example of the expert-choice router output distribution at each recursion step in a MoR model
with 𝑁𝑟 = 3. For each recursion step, the normalized counts of routing scores are plotted, distinguishing
between tokens selected by the expert (blue) and those not selected (orange). In all steps, auxiliary loss
achieves a perfect separation in router outputs, with selected tokens sharply concentrated near a routing score
of 1.0 and unselected tokens clustering near 0.0. Router output distributions for the two routing strategies
and their associated design choices are detailed in Appendix H.

5.3. Test-time Scaling Analysis

MoR enables test-time scaling via deeper recursion. We visualize how log-likelihood evolves across
recursion steps in MoR models with 𝑁𝑟 = {2, 3, 4} in Figure 5c. The overlaid bars illustrate the performance of
each model when the maximum thinking (recursion) depth of tokens gradually increases. This suggests that
deeper recursion not only provides additional compute but also enables each subsequent step to specialize
further in refining the token representation or “thought process” at its particular depth, leading to better
performance. Thereby, these results support the view that MoR enables test-time scaling: allocating more
recursion steps at inference can improve generation quality.

6. Related Work

Recursive Transformers. Parameter sharing provides an orthogonal path to efficiency (Dehghani et al., 2018;
Lan et al., 2019; Xia et al., 2019; Jaegle et al., 2021; Takase and Kiyono, 2021; Ng and Wang, 2024; Bae
et al., 2024). The Universal Transformer first showed that repeatedly applying a single block can match the
representational power of deep, non-shared stacks (Dehghani et al., 2018). Looped Transformers shown to be
effective, can act as programmable computers (Giannou et al., 2023), learn iterative data-fitting algorithms (Yang
et al., 2023), generalize to much longer inputs on algorithmic tasks (Fan et al., 2024), and illuminate few-shot
learning by mimicking multi-step optimizers (Gatmiry et al., 2024). Furthermore, Bae et al. (2024) mitigate
the accuracy loss often associated with weight tying by adding low-rank adaptation (LoRA) adapters (Hu et al.,
2022) in each loop, yielding Relaxed Recursive Transformers. Recent work further demonstrates that Recursive
Transformers excel at latent reasoning via recurrent depth (Geiping et al., 2025). While most prior studies focus
on the efficiency gains from weight tying, the recursive architecture itself offers a second level: inspired by early-
exiting (Schuster et al., 2022) and compute routing (Raposo et al., 2024), one can vary the number of recursions
per input (e.g., per token), allocating compute only where it is most beneficial during both training and inference.

10

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

Adaptive computation. Many works have shown that dynamic compute allocation can markedly reduce the
cost of training and inference, from traditional neural networks (Bengio et al., 2015; Huang et al., 2016; Teerapit-
tayanon et al., 2016; Panda et al., 2016) to large language models (Hou et al., 2020; Elbayad et al., 2020; Fedus
et al., 2022; Bae et al., 2023; Elhoushi et al., 2024; Raposo et al., 2024). Early exiting methods learn to halt pro-
cessing for “easy” samples (e.g., tokens or sequences in language modeling) by skipping the remaining layers (El-
bayad et al., 2020; Schuster et al., 2022; Dehghani et al., 2018; Mofakhami et al., 2024). Alternatively, early
exits can be combined with speculative decoding techniques (Chen et al., 2023; Leviathan et al., 2023) during
inference by leveraging lower layers for fast drafting (Bae et al., 2023; Elhoushi et al., 2024). Recently,Mixture-of-
Depths (MoD) (Raposo et al., 2024) reframed adaptive depth as a routing problem: a router at each layer selects
a subset of tokens to receive the full computation, while the rest bypass the layer, yielding finer-grained condi-
tional compute. This new form of adaptive allocation is well suited to Transformer architectures and has already
been extended to other modalities (Zhang et al., 2024a; Luo et al., 2024), highlighting a promising paradigm of
dynamic compute at token-level granularity. MoR applies this routing idea to recursive Transformers: tokens are
dynamically sent through repeated calls of a single, weight-tied block instead of through distinct layers. This shift
keeps parameter count constant, allows arbitrarily deep (adaptive) compute beyond the model’s physical depth.

Routing mechanism. LLMs have increasingly employed routers to enable adaptive computation, primarily in
sparse Mixture-of-Experts (MoE) frameworks (Shazeer et al., 2017; Lepikhin et al., 2020; Dai et al., 2022; Zoph
et al., 2022), i.e., each token is processed by a subset of expert networks chosen by a learned router, dramatically
increasing model capacity without a computational overhead. Early MoE architectures (Lepikhin et al., 2020;
Fedus et al., 2022; Jiang et al., 2024) adopted a token-choice routing strategy, wherein the router selects the
top-k experts for each token based on its hidden state. While effective, this approach often leads to load
imbalance across experts, necessitating auxiliary balancing losses. To address this, expert-choice routing (Zhou
et al., 2022; Guo et al., 2025) has been proposed, wherein each expert selects the tokens to serve, ensuring
perfect load balancing and improved efficiency. Building on this, a few works employed trainable routers to
determine which layers to skip (Zeng et al., 2023; Raposo et al., 2024; Gadhikar et al., 2024). Unlike traditional
early-exit methods, these expert-choice routing mechanisms enforce a static compute budget by capping the
number of tokens processed per layer (or depth).

Key-value caching. Key–value (KV) caching stores the per-token key and value tensors produced at each
layer during autoregressive decoding; reusing them eliminates quadratic-time recomputation and boosts
throughput (Shazeer, 2019; Ge et al., 2023; Liu et al., 2024a; Xiao et al., 2023; Pope et al., 2022; Kang et al.,
2024; Brandon et al., 2024). Unfortunately, retaining these tensors quickly saturates GPU memory, especially
for long contexts and large batches (Chowdhery et al., 2023; Brandon et al., 2024). Prior work tackles this
issue by quantizing KV activations to lower precision (Hooper et al., 2024; Zhang et al., 2024b), discarding
entries that contribute little to the final output (Zhang et al., 2023; Liu et al., 2023a), and sharing keys and
values across attention heads (Shazeer, 2019; Ainslie et al., 2023b). Brandon et al. (2024) push this idea
further, allowing adjacent layers to share the same key and value tensors and achieving additional memory
savings with negligible quality loss. Our Mixture-of-Recursions offer a complementary avenue: KV caches
generated in early recursions can be reused in later ones, potentially reducing memory consumption even
further. This provides the advantage of only needing to run the first recursion during prefill phase (Sun et al.,
2024), promising significant speedups for prompt settings over 1 million tokens. Two caching strategies in
MoR can be optimized based on their distinct benefits to suit various deployment settings.

Latent reasoning. An emerging line of work enables LLMs to perform reasoning internally within hidden
states rather than through explicit verbalization (Goyal et al., 2023; Pfau et al., 2024; Cheng and Van Durme,
2024; Tack et al., 2025; Kong et al.). Many approaches adopt a fixed latent reasoning depth: they insert special
tokens or structured prompts (e.g., a learnable “pause” token (Goyal et al., 2023) or filler punctuation (Pfau
et al., 2024)) that allow the model to execute a predetermined number of hidden reasoning passes before
producing an answer. Others reuse the model’s hidden states in a closed loop for a fixed number of iterations
by feeding final hidden states back as input to simulate chain-of-thought (Hao et al., 2024; Shen et al., 2025;
Saunshi et al., 2025). Another line of research enhances latent reasoning by augmenting hidden states with
intermediate semantic signals (Zelikman et al., 2024; Tack et al., 2025). However, these methods lack the
flexibility to allocate computation where it is most needed, leading to unnecessary overhead on easy inputs and
insufficient reasoning on complex ones. Building upon recent findings that looping enhances model reasoning
capabilities (Chen et al., 2025; Geiping et al., 2025; Saunshi et al., 2025; Zeng et al., 2025), we believe our
MoR framework provides a crucial foundation for bridging adaptive compute and latent reasoning.

11

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

7. Conclusion

Mixture-of-Recursions (MoR) presents a unified Transformer architecture that simultaneously leverages pa-
rameter sharing, adaptive recursion depth, and efficient KV caching without compromising model quality. By
dynamically assigning recursion depth to tokens via lightweight routers and selectively caching key-value states
for selected tokens, MoR reduces both quadratic attention computation and redundant memory access costs.
Extensive empirical evaluations show that MoR lowers validation perplexity and improves average few-shot
accuracy compared to both vanilla and previous recursive baselines, even with higher inference throughput.
These results demonstrate that MoR offers an effective path towards achieving large-model capabilities with
significantly reduced computational and memory overhead.

7.1. Limitations and Future Works

Reasoning MoRmodels. Recent studies have highlighted the redundancy within reasoning chains and address
it by applying token-level adaptive computation, like early-exit mechanisms (Yang et al., 2025; Jiang et al.,
2025; Dai et al., 2025). Our MoR framework inherently enables latent reasoning by adaptively determining
the necessary recursion depth for individual tokens. Therefore, a crucial future work involves exploring how
the router can dynamically learn to adjust to the necessity of chain-of-thought (CoT) chains when post-trained
on actual reasoning datasets. Developing advanced routing strategies that explicitly align recursion depth with
reasoning complexity may enhance reasoning accuracy, computational efficiency, and even interpretability.
Further scaling model family. Our experiments have been limited to models with up to 1.7 billion parameters
due to compute constraints. The natural next step is to train MoR models at larger scales (over 3 billion
parameters) on substantially larger corpora. To reduce overall pre-training costs, we could also explore
continued pre-training (i.e., uptraining), starting from existing pre-trained vanilla LLM checkpoints. As
future work, we plan to investigate MoR performance using various initialization strategies for recursive
models, as explored in prior work (Bae et al., 2024). Additionally, to ensure a fair scalability comparison, we
need to account for potential performance degradation in Recursive Transformers during post-training for
early-exiting (Bae et al., 2024) and incorporate inference throughput constraints for Vanilla Transformers.
Adaptive capacity control. Expert-choice routing offers the significant advantage of guaranteeing perfect
load balancing through pre-determined capacity factors (Raposo et al., 2024; Zhou et al., 2022). However,
a limitation arises when we want to allocate different capacities during inference. Specifically, in our MoR
models, we observe that when using an auxiliary loss, the router outputs for selected and unselected tokens
are almost perfectly separated. This makes it challenging to adjust top-k values after training. Therefore, a
more adaptive model design, which can leverage different capacities during both training and inference phases,
is needed to address this limitation.
Compatibility with sparse algorithms. Given MoR’s token-level adaptive recursion, we can further optimize
computation by integrating structured sparsity. This approach allows for the selective activation of subnetworks
or parameters (Liu et al., 2023b), dynamically pruning unnecessary computations at both the token and layer
levels (Raposo et al., 2024; Elhoushi et al., 2024). This investigation into sparse model designs promises
significant efficiency improvements. We believe many sparsity-based techniques, such as pruning (Han et al.,
2015) or quantization (Jacob et al., 2018), are highly complementary to MoR. This will provide deeper insights
into effective sparse architectures within recursive models, offering promising directions for future research.
Expansion to multimodal and non-text domains. MoR’s recursion block is inherently modality-agnostic,
allowing its adaptive depth mechanism to extend beyond text processing. This crucial property enables MoR to
readily integrate into vision, speech, and unified multimodal transformer architectures. Applying token-adaptive
recursion to long-context video or audio streams holds the potential for even greater memory efficiencies and
substantial throughput gains, crucial for real-world applications. By dynamically adjusting the processing depth
for each token or segment, MoR could unlock these significant benefits.

7.2. Acknowledgements

We thank Jacob Eisenstein for valuable feedback on an earlier version of the paper. We also thank Seungyeon
Kim, Mostafa Elhoushi, Sangdoo Yun for helpful conversations. Finally, we thank the Google Cloud Platform
for awarding Google Cloud credits for this project.

12

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

References

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit Sanghai.
GQA: training generalized multi-query transformer models from multi-head checkpoints. In Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December
6-10, 2023, pages 4895–4901, 2023a. doi: 10.18653/V1/2023.EMNLP-MAIN.298.

Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit Sanghai.
Gqa: Training generalized multi-query transformer models from multi-head checkpoints. arXiv preprint
arXiv:2305.13245, 2023b.

Preslav Aleksandrov, Meghdad Kurmanji, Fernando Garcia Redondo, David O’Shea, William Shen, Alex Iacob,
Lorenzo Sani, Xinchi Qiu, Nicola Cancedda, and Nicholas D Lane. Abbie: Autoregressive block-based iterative
encoder for efficient sequence modeling. arXiv preprint arXiv:2507.08567, 2025.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Leandro von Werra, and Thomas Wolf. Smollm - blazingly fast
and remarkably powerful, 2024.

Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-Young Yun. Fast and robust early-exiting framework for
autoregressive language models with synchronized parallel decoding. In Houda Bouamor, Juan Pino, and
Kalika Bali, editors, Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
pages 5910–5924, Singapore, dec 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
emnlp-main.362. URL https://aclanthology.org/2023.emnlp-main.362.

Sangmin Bae, Adam Fisch, Hrayr Harutyunyan, Ziwei Ji, Seungyeon Kim, and Tal Schuster. Relaxed recursive
transformers: Effective parameter sharing with layer-wise lora. arXiv preprint arXiv:2410.20672, 2024.

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von Werra. Smollm-corpus,
2024. URL https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus.

Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional computation in neural
networks for faster models. arXiv preprint arXiv:1511.06297, 2015.

William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Ragan-Kelley. Reduc-
ing transformer key-value cache size with cross-layer attention. Neural Information Processing Systems, 2024.
doi: 10.48550/arXiv.2405.12981.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John Jumper.
Accelerating large language model decoding with speculative sampling. arXiv preprint arXiv: 2302.01318,
2023.

Yilong Chen, Junyuan Shang, Zhenyu Zhang, Yanxi Xie, Jiawei Sheng, Tingwen Liu, Shuohuan Wang, Yu Sun,
Hua Wu, and Haifeng Wang. Inner thinking transformer: Leveraging dynamic depth scaling to foster adaptive
internal thinking. arXiv preprint arXiv:2502.13842, 2025.

Jeffrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reasoning through dense
representations. arXiv preprint arXiv:2412.13171, 2024.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language modeling
with pathways. Journal of Machine Learning Research, 24(240):1–113, 2023.

Damai Dai, Li Dong, Shuming Ma, Bo Zheng, Zhifang Sui, Baobao Chang, and Furu Wei. Stablemoe: Stable
routing strategy for mixture of experts. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 7085–7095, 2022.

Muzhi Dai, Chenxu Yang, and Qingyi Si. S-grpo: Early exit via reinforcement learning in reasoning models.
arXiv preprint arXiv:2505.07686, 2025.

13

https://aclanthology.org/2023.emnlp-main.362
https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv preprint
arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-efficient
exact attention with io-awareness. Advances in neural information processing systems, 35:16344–16359, 2022.

DeepSeek-AI. Deepseek-v3 technical report. arXiv preprint arXiv: 2412.19437, 2024.
Mostafa Dehghani, Stephan Gouws, O. Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal transformers.
International Conference on Learning Representations, 2018.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. Depth-adaptive transformer. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=SJg7KhVKPH.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas
Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layerskip: Enabling early exit inference and
self-speculative decoding. arXiv preprint arXiv:2404.16710, 2024.

Ying Fan, Yilun Du, Kannan Ramchandran, and Kangwook Lee. Looped transformers for length generalization.
arXiv preprint arXiv:2409.15647, 2024.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter models
with simple and efficient sparsity. The Journal of Machine Learning Research, 23(1):5232–5270, 2022.

Advait Gadhikar, Souptik Kumar Majumdar, Niclas Popp, Piyapat Saranrittichai, Martin Rapp, and Lukas Schott.
Attention is all you need for mixture-of-depths routing. arXiv preprint arXiv:2412.20875, 2024.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish
Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation harness, 07 2024. URL
https://zenodo.org/records/12608602.

Khashayar Gatmiry, Nikunj Saunshi, Sashank J Reddi, Stefanie Jegelka, and Sanjiv Kumar. Can looped transform-
ers learn to implement multi-step gradient descent for in-context learning? arXiv preprint arXiv:2410.08292,
2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you what to
discard: Adaptive kv cache compression for llms. International Conference on Learning Representations, 2023.
doi: 10.48550/arXiv.2310.01801.

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson, Bhavya
Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with latent reasoning: A
recurrent depth approach. arXiv preprint arXiv:2502.05171, 2025.

Google Gemini Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context.
arXiv preprint arXiv: 2403.05530, 2024.

Google Gemini Team. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context,
and next generation agentic capabilities, 2025. URL https://arxiv.org/abs/2507.06261.

Sia Gholami and Marwan Omar. Do generative large language models need billions of parameters? arXiv
preprint arXiv: 2309.06589, 2023.

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris Papailiopoulos.
Looped transformers as programmable computers. In International Conference on Machine Learning, pages
11398–11442. PMLR, 2023.
Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh Nagarajan.
Think before you speak: Training language models with pause tokens. arXiv preprint arXiv:2310.02226,
2023.

14

https://openreview.net/forum?id=SJg7KhVKPH
https://zenodo.org/records/12608602
https://arxiv.org/abs/2507.06261

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi
Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
arXiv preprint arXiv:2501.12948, 2025.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient neural
network. Advances in neural information processing systems, 28, 2015.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian. Training
large language models to reason in a continuous latent space. arXiv preprint arXiv:2412.06769, 2024.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Hasan Genc, Kurt Keutzer, Amir Gholami, and Sophia
Shao. Speed: Speculative pipelined execution for efficient decoding. arXiv preprint arXiv:2310.12072, 2023.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney, Yakun Sophia Shao, Kurt Keutzer,
and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv cache quantization.
arXiv preprint arXiv: 2401.18079, 2024.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dynabert: Dynamic bert with adaptive
width and depth. Advances in Neural Information Processing Systems, 33:9782–9793, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks with stochastic
depth. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision - ECCV 2016 - 14th
European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part IV, volume 9908
of Lecture Notes in Computer Science, pages 646–661. Springer, 2016. doi: 10.1007/978-3-319-46493-0_39.
URL https://doi.org/10.1007/978-3-319-46493-0_39.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam,
and Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-arithmetic-only
inference. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2704–2713,
2018.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira. Perceiver:
General perception with iterative attention. In International conference on machine learning, pages 4651–4664.
PMLR, 2021.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford, Deven-
dra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al. Mixtral of experts. arXiv
preprint arXiv:2401.04088, 2024.

Guochao Jiang, Guofeng Quan, Zepeng Ding, Ziqin Luo, Dixuan Wang, and Zheng Hu. Flashthink: An early
exit method for efficient reasoning. arXiv preprint arXiv:2505.13949, 2025.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo Zhao. Gear:
An efficient kv cache compression recipe for near-lossless generative inference of llm. arXiv preprint arXiv:
2403.05527, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

Dahyun Kim, Chanjun Park, Sanghoon Kim, Wonsung Lee, Wonho Song, Yunsu Kim, Hyeonwoo Kim, Yungi
Kim, Hyeonju Lee, Jihoo Kim, et al. Solar 10.7 b: Scaling large language models with simple yet effective
depth up-scaling. arXiv preprint arXiv:2312.15166, 2023a.

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W Mahoney, Amir Gholami, and
Kurt Keutzer. Speculative decoding with big little decoder. Advances in Neural Information Processing Systems,
36:39236–39256, 2023b.

15

https://doi.org/10.1007/978-3-319-46493-0_39

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

Deqian Kong, Minglu Zhao, Dehong Xu, Bo Pang, Shu Wang, Edouardo Honig, Zhangzhang Si, Chuan Li,
Jianwen Xie, Sirui Xie, et al. Latent thought models with variational bayes inference-time computation. In
Forty-second International Conference on Machine Learning.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao
Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention.
In Proceedings of the 29th symposium on operating systems principles, pages 611–626, 2023.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. Albert:
A lite bert for self-supervised learning of language representations. International Conference on Learning
Representations, 2019.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information processing
systems, 2, 1989.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional computation and automatic
sharding. arXiv preprint arXiv:2006.16668, 2020.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative decoding.
In Proceedings of the 40th International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang Li, Ankit Singh Rawat, Sashank J Reddi, Ke Ye, Felix
Chern, Felix Yu, Ruiqi Guo, et al. The lazy neuron phenomenon: On emergence of activation sparsity in
transformers. arXiv preprint arXiv:2210.06313, 2022.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Reza Haffari, and Bohan Zhuang. Minicache: Kv cache compression
in depth dimension for large language models. Advances in Neural Information Processing Systems, 37:
139997–140031, 2024a.
Luyang Liu, Jonas Pfeiffer, Jiaxing Wu, Jun Xie, and Arthur Szlam. Deliberation in latent space via differentiable
cache augmentation. arXiv preprint arXiv:2412.17747, 2024b.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting Cheng, and
Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first International Conference on
Machine Learning, 2024c.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning v2: Prompt
tuning can be comparable to fine-tuning universally across scales and tasks. arXiv preprint arXiv:2110.07602,
2021.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyrillidis, and
Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance hypothesis for llm kv cache
compression at test time. Advances in Neural Information Processing Systems, 36:52342–52364, 2023a.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms at inference time. In
International Conference on Machine Learning, pages 22137–22176. PMLR, 2023b.

AI @ Meta Llama Team. The llama 3 herd of models. arXiv preprint arXiv: 2407.21783, 2024.
Yaxin Luo, Gen Luo, Jiayi Ji, Yiyi Zhou, Xiaoshuai Sun, Zhiqiang Shen, and Rongrong Ji. 𝛾-mod: Exploring
mixture-of-depth adaptation for multimodal large language models. arXiv preprint arXiv:2410.13859, 2024.

Mehrnaz Mofakhami, Reza Bayat, Ioannis Mitliagkas, Joao Monteiro, and Valentina Zantedeschi. Perfor-
mance control in early exiting to deploy large models at the same cost of smaller ones. arXiv preprint
arXiv:2412.19325, 2024.

Ali Momeni, Babak Rahmani, Benjamin Scellier, Logan G. Wright, Peter L. McMahon, Clara C. Wanjura,
Yuhang Li, Anas Skalli, Natalia G. Berloff, Tatsuhiro Onodera, Ilker Oguz, Francesco Morichetti, Philipp
del Hougne, Manuel Le Gallo, Abu Sebastian, Azalia Mirhoseini, Cheng Zhang, Danijela Marković, Daniel
Brunner, Christophe Moser, Sylvain Gigan, Florian Marquardt, Aydogan Ozcan, Julie Grollier, Andrea J. Liu,

16

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

Demetri Psaltis, Andrea Alù, and Romain Fleury. Training of physical neural networks. arXiv preprint arXiv:
2406.03372, 2024.

Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski, David Tarjan, and Edoardo M Ponti. Dynamic memory
compression: Retrofitting llms for accelerated inference. arXiv preprint arXiv:2403.09636, 2024.

Kei-Sing Ng and Qingchen Wang. Loop neural networks for parameter sharing. arXiv preprint arXiv:2409.14199,
2024.

OpenAI. Gpt-4 technical report. PREPRINT, 2023.
Priyadarshini Panda, Abhronil Sengupta, and Kaushik Roy. Conditional deep learning for energy-efficient and
enhanced pattern recognition. In 2016 design, automation & test in europe conference & exhibition (DATE),
pages 475–480. IEEE, 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David So,
Maud Texier, and Jeff Dean. Carbon emissions and large neural network training. arXiv preprint arXiv:
2104.10350, 2021.

Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin Raffel, Lean-
dro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the finest text data at scale.
In The Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2024.
URL https://openreview.net/forum?id=n6SCkn2QaG.

Jacob Pfau, William Merrill, and Samuel R Bowman. Let’s think dot by dot: Hidden computation in transformer
language models. arXiv preprint arXiv:2404.15758, 2024.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm Levskaya, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference. arXiv preprint
arXiv: 2211.05102, 2022.

David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and Adam Santoro.
Mixture-of-depths: Dynamically allocating compute in transformer-based language models. arXiv preprint
arXiv:2404.02258, 2024.

Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J Reddi. Reasoning with latent
thoughts: On the power of looped transformers. arXiv preprint arXiv:2502.17416, 2025.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Q. Tran, Yi Tay, and Donald Metzler.
Confident adaptive language modeling. arXiv preprint arXiv: 2207.07061, 2022.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint arXiv:1911.02150,
2019.

Noam M. Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and
J. Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. International
Conference on Learning Representations, 2017.

Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu, Yali Du, and Yulan He. Codi: Compressing chain-of-
thought into continuous space via self-distillation. arXiv preprint arXiv:2502.21074, 2025.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui Wang, Shuming Ma, Quanlu Zhang, Jianyong Wang, and
Furu Wei. You only cache once: Decoder-decoder architectures for language models. Advances in Neural
Information Processing Systems, 37:7339–7361, 2024.

Jihoon Tack, Jack Lanchantin, Jane Yu, Andrew Cohen, Ilia Kulikov, Janice Lan, Shibo Hao, Yuandong Tian,
Jason Weston, and Xian Li. Llm pretraining with continuous concepts. arXiv preprint arXiv:2502.08524,
2025.

17

https://openreview.net/forum?id=n6SCkn2QaG

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

Sho Takase and Shun Kiyono. Lessons on parameter sharing across layers in transformers. arXiv preprint
arXiv:2104.06022, 2021.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. ACM Computing
Surveys, 55(6):1–28, 2022.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast inference via early exiting
from deep neural networks. In 2016 23rd international conference on pattern recognition (ICPR), pages
2464–2469. IEEE, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and
Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen Yan, Yi Zhu,
Quanlu Zhang, Mosharaf Chowdhury, and Mi Zhang. Efficient large language models: A survey. arXiv
preprint arXiv: 2312.03863, 2023.

Lean Wang, Huazuo Gao, Chenggang Zhao, Xu Sun, and Damai Dai. Auxiliary-loss-free load balancing strategy
for mixture-of-experts. arXiv preprint arXiv:2408.15664, 2024.

Haoyi Wu and Kewei Tu. Layer-condensed kv cache for efficient inference of large language models. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 11175–11188, 2024.

Yingce Xia, Tianyu He, Xu Tan, Fei Tian, Di He, and Tao Qin. Tied transformers: Neural machine translation
with shared encoder and decoder. In Proceedings of the AAAI conference on artificial intelligence, volume 33,
pages 5466–5473, 2019.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming language models
with attention sinks. arXiv preprint arXiv: 2309.17453, 2023.
Chen Xing, Devansh Arpit, Christos Tsirigotis, and Yoshua Bengio. A walk with sgd. arXiv preprint
arXiv:1802.08770, 2018.

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Qiaowei Li, Zheng Lin, Li Cao, and Weiping
Wang. Dynamic early exit in reasoning models. arXiv preprint arXiv:2504.15895, 2025.

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramidinfer: Pyramid kv cache
compression for high-throughput llm inference. arXiv preprint arXiv:2405.12532, 2024.

Liu Yang, Kangwook Lee, Robert Nowak, and Dimitris Papailiopoulos. Looped transformers are better at
learning learning algorithms. arXiv preprint arXiv:2311.12424, 2023.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca: A distributed
serving system for {Transformer-Based} generative models. In 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22), pages 521–538, 2022.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D Goodman. Quiet-star:
Language models can teach themselves to think before speaking. arXiv preprint arXiv:2403.09629, 2024.

Boyi Zeng, Shixiang Song, Siyuan Huang, Yixuan Wang, He Li, Ziwei He, Xinbing Wang, Zhiyu Li, and Zhouhan
Lin. Pretraining language models to ponder in continuous space. arXiv preprint arXiv:2505.20674, 2025.

Dewen Zeng, Nan Du, Tao Wang, Yuanzhong Xu, Tao Lei, Zhifeng Chen, and Claire Cui. Learning to skip for
language modeling. arXiv preprint arXiv:2311.15436, 2023.

Jun Zhang, Desen Meng, Ji Qi, Zhenpeng Huang, Tao Wu, and Limin Wang. p-mod: Building mixture-of-depths
mllms via progressive ratio decay. arXiv preprint arXiv:2412.04449, 2024a.

Tianyi Zhang, Jonah Yi, Zhaozhuo Xu, and Anshumali Shrivastava. Kv cache is 1 bit per channel: Efficient large
language model inference with coupled quantization. Advances in Neural Information Processing Systems, 37:
3304–3331, 2024b.

18

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong
Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient generative inference of large
language models. Advances in Neural Information Processing Systems, 36:34661–34710, 2023.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid Shojanazeri,
Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully sharded data parallel. arXiv preprint
arXiv:2304.11277, 2023.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao Zhang.
{DistServe}: Disaggregating prefill and decoding for goodput-optimized large language model serving. In
18th USENIX Symposium on Operating Systems Design and Implementation (OSDI 24), pages 193–210, 2024.
Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V Le, James
Laudon, et al. Mixture-of-experts with expert choice routing. Advances in Neural Information Processing
Systems, 35:7103–7114, 2022.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and William
Fedus. St-moe: Designing stable and transferable sparse expert models. arXiv preprint arXiv:2202.08906,
2022.

19

Contents

1 Introduction 1

2 Method 3
2.1 Preliminary . 3
2.2 Mixture-of-Recursions . 4

2.2.1 Routing Strategies: Expert-choice vs. Token-choice . 4
2.2.2 KV Caching Strategies: Recursion-wise Caching vs. Recursive Sharing 5

3 Experiments 6
3.1 Main Results . 6
3.2 IsoFLOP Analysis . 7
3.3 Inference Throughput Evaluation . 7

4 Ablation Studies 8
4.1 Parameter Sharing Strategies . 8
4.2 Routing Strategies . 8
4.3 KV Caching Strategies . 9

5 Analysis 9
5.1 Compute-optimal Scaling Analysis . 9
5.2 Routing Analysis . 9
5.3 Test-time Scaling Analysis . 10

6 Related Work 10

7 Conclusion 12
7.1 Limitations and Future Works . 12
7.2 Acknowledgements . 12

A Details of Design Choices for Mixture-of-Recursions 22
A.1 Parameter-sharing Strategy . 22
A.2 Routing Strategy . 23
A.3 KV Caching Strategy . 24

B Experimental Setup 24

C Expanded Results of IsoFLOP Analysis 25

D Details of Experimental Settings for Throughput Measurement 27

E Expanded Results of Parameter Sharing Strategy 28

F Expanded Results of Design Choices for Router 30
F.1 Details of Design Configurations . 30

20

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

F.2 Router Performance Evaluation Metrics . 30
F.3 Extended Evaluation Results of Router Designs . 30

G Expanded Results of KV Cache Sharing Mechanism 32
G.1 Key Value Representation Trends in Recursive Transformers 32
G.2 Performance Comparison of KV Sharing Strategy . 33

H Expanded Qualitative Results 34
H.1 Analysis on Adaptive Computation Paths . 34
H.2 Analysis on Router Weights . 36

21

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

A. Details of Design Choices for Mixture-of-Recursions

In this section, we provide detailed descriptions of the design choices employed in Mixture-of-Recursions,
expanding upon the summary provided in the main pages.

A.1. Parameter-sharing Strategy

Table 5 shows formulation and visualization of four parameter-sharing strategies: Cycle, Middle-Cycle, Sequence,
and Middle-Sequence. These strategies determine how a shared pool of blocks Φ′ are reused across a total of 𝐿
unrolled layers. The optimal strategy for parameter sharing in recursive models remains an open question.
In the Cycle strategy, a fixed set of parameters is reused cyclically across all recursion steps. By forcing the

model to re-engage with the input through the same shared block, it encourages a deeper, iterative refinement
process, akin to “rethinking” the problem from the ground up at every stage. However, because the same
transformations are applied repeatedly regardless of input variation, it may limit the model’s capacity to learn
diverse or highly specialized features.
On the other hand, the Sequence strategy assigns distinct parameters to each recursion block in sequential

order. A potential drawback is that simply applying similar transformations twice in a rowmay lead to redundant
features with diminishing returns. Nevertheless, the use of a fixed, sequential order of layers may provide a
stable and predictable structure.
Building upon these strategies, the Middle sharing variant further refines parameter reuse by preserving

unique parameters at the first and last layers while sharing weights only among the intermediate layers.
This approach aims to balance the trade-off between parameter efficiency and representational flexibility,
maintaining distinct entry and exit transformations while benefiting from reduced parameter redundancy in
the middle layers. In line with recent findings (Kim et al., 2023a; Geiping et al., 2025), Middle sharing can
capture important input and output nuances more effectively than pure Cycle or Sequence sharing, without
significantly increasing model size.

Table 5: Parameter-sharing strategies in Recursive Transformers. This table shows Cycle, Middle-Cycle, Sequence, and
Middle-Sequence schemes with layer reuse, where Middle-* retains unique first and last layers.

Cycle Strategy Middle-Cycle Strategy
Layers Equation Figure Equation Figure
Last – 𝑓

(︀
h𝐿−1
𝑡 ; Φ𝐿−1

)︀
Recursion 𝑓

(︁
hℓ
𝑡; Φ

′
ℓ mod (𝐿/𝑁𝑟)

)︁
Layer 0

Layer 1 𝑓
(︁
hℓ
𝑡; Φ

′
(ℓ−1 mod ((𝐿−2)/𝑁𝑟))+1

)︁
Layer 1

Layer 2

Layer 0

Layer 3

First – 𝑓
(︀
h0
𝑡 ; Φ0

)︀
Sequence Strategy Middle-Sequence Strategy

Layers Equation Figure Equation Figure
Last – 𝑓

(︀
h𝐿−1
𝑡 ; Φ𝐿−1

)︀
Recursion 𝑓

(︁
hℓ
𝑡; Φ

′
⌊ℓ/𝑁𝑟⌋

)︁
Layer 1

Layer 0

𝑓
(︁
hℓ
𝑡; Φ

′
⌊(ℓ−1)/𝑁𝑟⌋+1)

)︁
Layer 0

Layer 3

Layer 2

Layer 1

First – 𝑓
(︀
h0
𝑡 ; Φ0

)︀

22

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

A.2. Routing Strategy

In this section, we provide an in-depth explanation of the two routing strategies employed in Mixture-of-
Recursions: Expert-choice and Token-choice routers. Each approach has distinct advantages and inherent
limitations, which we first outline before discussing the mitigation techniques we utilized.

Expert-choice routing. The expert-choice router offers several advantages, including a fixed compute budget
that simplifies resource management. However, it suffers from a key issue: the top-𝑘 selection operation,
which requires information of tokens that appear later in the sequence, violates causality in autoregressive
inference. This non-causal dependency (i.e., information leakage) can cause unexpected behavior during
inference, potentially reducing model reliability.
To address these challenges, we explore two approaches: the auxiliary router and the auxiliary loss (Raposo

et al., 2024). The auxiliary router is an additional lightweight network trained jointly but used only during
inference; it predicts whether a token will be among the top-𝑘 selection. This additional router is trained
with a binary cross-entropy loss, where the top-k selections from the main router are defined as the targets.
Importantly, its training is isolated from the main objective through gradient blocking, so it does not affect the
primary model training. Meanwhile, the auxiliary loss applies the binary cross-entropy loss to the main router
itself, enabling it to simultaneously learn to push top-𝑘 tokens towards one and others towards zero during
training. This ensures the router can reliably predict which tokens will be selected as top-𝑘 during inference.

Token-choice routing. In contrast, the token-choice router assigns recursion depths on a per-token basis
without enforcing a fixed compute budget, thus avoiding leakage of information across tokens and preserving
autoregressive properties. However, this introduces load imbalance across experts, which results in uneven
token distribution across experts (or recursion depths), potentially causing inefficient compute allocation and
unbalanced training.
To mitigate load imbalance, we employ two solutions from existing literature. Balancing Loss (Lepikhin

et al., 2020; Fedus et al., 2022) regularizes for a more uniform distribution of tokens across experts. For a
sequence of length 𝑇 , a balancing loss for MoR is calculated as follows:

ℒBalance = 𝛼

𝑁𝑟∑︁
𝑖=1

𝑓𝑖𝑃𝑖,

𝑓𝑖 =
𝑁𝑟

𝑇

𝑇∑︁
𝑡=1

I(Token 𝑡 selects Expert 𝑖),

𝑃𝑖 =
1

𝑇

𝑇∑︁
𝑡=1

𝑔𝑖𝑡,

where 𝑁𝑟 is the total number of experts (which is also the number of recursion), 𝑔𝑖𝑡 is the routing score of
expert 𝑖 for token 𝑡, 𝑓𝑖 represents the fraction of tokens routed to expert 𝑖, 𝑃𝑖 denotes the average routing
scores of expert 𝑖, and 𝜆 is a hyperparameter controlling the strength of the auxiliary loss.

Loss-free (Wang et al., 2024) utilizes router biasing without explicit regularization loss. Specifically, this
method adjusts per-expert bias terms 𝑏𝑖 to balance token assignments across experts. During each training
batch, routing scores are computed, and the number of tokens assigned to each expert (𝑐𝑖) is counted. The
load violation error is calculated as 𝑒𝑖 = 𝑐𝑖 − 𝑐𝑖 where 𝑐𝑖 is the average token count for expert 𝑖. Biases are
then updated via 𝑏𝑖 ← 𝑏𝑖 + 𝑢× sign(𝑒𝑖), where 𝑢 is a bias update rate. The biased routing scores for selecting
top-𝑘 expert are calculated as

𝑔𝑡𝑖 =

{︃
𝑔𝑡𝑖 , if 𝑔𝑡𝑖 + 𝑏𝑖 ∈ topk

(︀
{𝑔𝑡𝑗 + 𝑏𝑗 | 1 ≤ 𝑗 ≤ 𝑁}, 𝑘

)︀
0, otherwise

Note that the expert bias term is only utilized to adjust the routing strategy by influencing the top-𝑘 selection.

23

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

A.3. KV Caching Strategy

This work investigates two principal strategies for key-value (KV) caching to optimize memory usage during
Recursive Transformer computations: recursion-wise caching and recursive KV sharing.

Recursion-wise caching. This keeps separate KV caches for each recursion step, ensuring tokens attend only
to the KV pairs generated in their current recursion block. This prevents distribution mismatches between
recursion steps, helping to maintain model accuracy while reducing memory and computational costs.

Recursive KV sharing. In contrast, recursive sharing reuses KV pairs computed in the first recursion step
for all subsequent steps. Although this approach further lowers memory usage and eliminates the need to
compute deeper recursion during the prefill phase, it introduces potential mismatches as later recursion steps
receive KV representations originally intended for earlier steps. Such mismatch can negatively impact model
performance when token routing is precise. Therefore, recursion-wise caching is generally preferred in settings
with selective token routing to avoid performance degradation, while recursive KV sharing may be considered
when memory efficiency is prioritized and prefill time is main bottleneck in the system.

B. Experimental Setup

Training settings. We utilized a Llama-based Transformer architecture (Llama Team, 2024), referring to
the configurations of the open-source SmolLM models (Allal et al., 2024). All models were pretrained on a
deduplicated subset of the FineWeb-Edu dataset (Penedo et al., 2024) in SmolLM-Corpus (Ben Allal et al.,
2024), which comprises 220 billion tokens sourced from educational materials. Pretraining was conducted using
four H100 or A100 GPUs. In our main and isoFLOPs analysis experiments, we utilized a Trapezoid learning rate
scheduler, which consists of warmup (about 5%), stable, and cooldown (20%) phases. This approach allows us
to efficiently continue pretraining for scaling laws from intermediate checkpoints, eliminating the need to train
all models independently. In contrast, for all other experiments, we used a simple cosine annealing scheduler.

Evaluation settings. To assess model performance, we evaluated few-shot accuracy on six benchmarks using
the Language Model Evaluation Harness: LAMBADA (LD), HellaSwag (HS), PIQA (PQ), WinoGrande (WG),
ARC (Easy and Challenge), and MMLU. For all few-shot datasets, excluding LAMBADA, WinoGrande, and
MMLU, we normalized accuracy by the byte length of the target string. We adhered to the standard number
of shots for each dataset, and used the continuation task specifically for MMLU for simplicity. All evaluation
performance measurements were conducted using a single H100 or A100 GPU.

Model Architecture Details Table 6 summarizes the architectural specifications of the four Vanilla Transformer
models used as the base for our recursive models. Each model variant differs in scale, ranging from 135M
to 1.7B total parameters (including both non-embedding and embedding components). For consistency and
comparability, all models are trained using a vocabulary size of 49K and a maximum input sequence length of
2K tokens.
Table 6: Key parameters of four model size variants. A model’s size is defined by the total number of its non-embedding
and embedding parameters. Three small models utilize Grouped-Query Attention (Ainslie et al., 2023a), reducing the
number of key-value heads. We refer to the base configurations of the open-sourced SmolLM models (Allal et al., 2024).

Base Configuration Attention & Feed-Forward Input

Models N-emb Emb 𝑁𝐿 𝑑𝑚𝑜𝑑𝑒𝑙 𝑁ℎ𝑒𝑎𝑑 𝑁𝐾𝑉 𝑑ℎ𝑒𝑎𝑑 𝑑𝑖𝑛𝑡𝑒𝑟 Vocab 𝐿𝑐𝑡𝑥

Vanilla 135M 106M 28M 30 576 9 3 64 1536 49K 2K
Vanilla 360M 315M 47M 32 960 15 5 64 2560 49K 2K
Vanilla 730M 654M 75M 26 1536 24 8 64 4096 49K 2K
Vanilla 1.7B 1.61B 101M 24 2048 32 32 64 8192 49K 2K

24

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

C. Expanded Results of IsoFLOP Analysis

In the main paper (§3.2), we compared Vanilla, Recursive and our Mixture-of-Recursions (MoR) models under
matched training compute. Four base model capacities were studied—135M, 360M, 730M and 1.7B parameters.
For recursive and MoR models, we fix the recursion count to 𝑁𝑟=3, so the number of unique parameters is
roughly one-third of the vanilla counterpart. Each architecture is trained once for the largest compute budget
(16.5EB)6 and the resulting checkpoint is re-used to obtain the 5EB and 2EB variants, as detailed below.

FLOPs approximated calculation of Transformers. We follow the approximation for calculating FLOPs as
detailed in Kaplan et al. (2020). Our analysis solely focuses on forward pass FLOPs, since the FLOPs involved in
the backward pass are typically just double those of the forward pass. For most operations within Transformers,
which primarily consist of linear projections, the forward pass FLOPs are calculated as two times the number of
parameters, excluding the attention mechanism.
Regarding attention, we specifically account for the operations from the dot product between queries and

keys and the scaling of values with softmax values. We only calculate FLOPs that contribute to the actual loss,
excluding redundant computations in the upper triangular portion due to causality masking. Furthermore, we
omit any additional computational costs associated with FlashAttention (Dao et al., 2022), normalization, and
non-linearity operations from our overall FLOPs calculation.
As a result, Vanilla and Recursive Transformers have the same FLOPs. For MoR, the FLOPs calculation varies

based on the routing and KV caching strategy. Especially, we calculated FLOPs based on the sequence length
at each recursion depth, which is determined by the capacity factor and caching mechanism. In the case of
token-choice routing, since the actual token allocation changes at every step, we approximated the FLOPs by
assuming perfect balancing. Furthermore, we add extra layers to a few MoR models to ensure their effective
depth is divisible by the recursion number. For example, in a 135M model with 30 layers, setting a base depth
of 10 and applying recursion three times (as in the Middle-Cycle strategy) results in a total of 32 layers. These
additional layers introduce extra FLOPs, so we reduce the number of training steps accordingly to maintain our
predefined FLOP budget.

Trapezoid learning-rate schedule with checkpoint reuse. To avoid retraining every model from scratch for
each FLOPs budget, we employ the trapezoid schedule (Xing et al., 2018). The rule of this scheduler is as follows:

𝜂(𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝑡
𝑤 𝜂max, 0 ≤ 𝑡 < 𝑤 (warm-up),
𝜂max, 𝑤 ≤ 𝑡 < 𝑝 (plateau),
𝜂max

(︁
1− 𝑡−𝑝

𝑑

)︁
, 𝑝 ≤ 𝑡 < 𝑝+ 𝑑 (cool-down),

where 𝑤 denotes the warm-up interval, 𝑝− 𝑤 is the constant-LR plateau, and 𝑑 represents the cool-down
segment. This stable phase allows us to efficiently manage experiments by saving intermediate checkpoints
and then running additional cool-down steps from those points, according to each budget. For the warm-up we
allocate 5% of the total training steps of the smallest budget (2EB), and we set the cool-down steps to 20% of
the total training steps for each corresponding budget.

Results at a glance. Table 7 reports NLL on FineWeb-Edu validation set and few-shot accuracy on six bench-
marks. Our findings reveal a clear trend: more compute consistently leads to better models, evidenced by lower
NLL and improved accuracy with higher FLOPs. However, weight-sharing alone in recursive models degraded
performance compared to Vanilla, a clear trade-off for the reduced parameters. Crucially, token-routed MoR
models overcome this shortcoming, catching up to and then surpassing Vanilla models from 360M parameters
upward, all while utilizing only one-third of the parameters. This performance advantage persists at 730M
and 1.7B parameter scales.

61EB =1018 floating-point operations.

25

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

Table 7: Detailed results of isoFLOP analysis across three compute budgets. We evaluate negative log-likelihood (NLL) on
the FineWeb-Edu validation set and few-shot accuracy on six downstream tasks for four base model sizes (135M, 360M,
730M, 1.7B). Each model was initially trained up to 16.5EB and sliced back to 5EB and 2EB via mid-training checkpoints
using a trapezoid learning-rate schedule. All models used three recursion steps. For MoR models, we use expert-choice
routing and recursion-wise caching mechanisms. We highlight the best-performing model in each setting in gray.

Pretrain Recursion NLL ↓ Few-shot Accuracy ↑

Models Base N-Emb 𝑁𝐿 FLOPs 𝑁𝑡𝑜𝑘 Share Loop FineWeb LD HS PQ WG ARC MMLU Avg
Vanilla 135M 106M 30 2.0e+18 6.5B - - 3.0922 22.80 30.93 62.35 51.14 36.28 26.29 38.30
Recursive 135M 42M 1+10+1 2.0e+18 6.1B M-Cyc 3 3.2058 19.79 29.32 60.17 50.59 34.83 25.40 36.68
MoR 135M 42M 1+10+1 2.0e+18 9.2B M-Cyc 3 3.1077 21.13 31.00 59.79 49.09 34.87 25.63 36.92
Vanilla 135M 106M 30 5.0e+18 16.1B - - 2.9464 26.88 33.69 63.98 51.46 37.08 27.07 40.03
Recursive 135M 42M 1+10+1 5.0e+18 15.1B M-Cyc 3 3.0534 24.51 31.57 62.40 50.83 35.78 25.94 38.51
MoR 135M 42M 1+10+1 5.0e+18 23.1B M-Cyc 3 3.0192 22.01 32.53 61.75 49.88 35.39 26.19 37.96
Vanilla 135M 106M 30 16.5e+18 53.3B - - 2.8432 30.16 36.51 64.80 53.43 40.17 27.82 42.15
Recursive 135M 42M 1+10+1 16.5e+18 50.0B M-Cyc 3 2.9552 25.98 33.36 63.98 51.78 36.96 26.68 39.79
MoR 135M 42M 1+10+1 16.5e+18 76.2B M-Cyc 3 2.9490 22.61 33.99 61.92 47.83 35.95 26.36 38.11

Vanilla 360M 315M 32 2.0e+18 2.4B - - 3.3785 17.27 27.90 59.36 51.38 32.10 25.49 35.58
Recursive 360M 118M 1+10+1 2.0e+18 2.4B M-Cyc 3 3.4864 10.34 26.66 58.00 51.54 30.94 24.94 33.74
MoR 360M 118M 1+10+1 2.0e+18 3.6B M-Cyc 3 3.1026 24.14 30.53 61.86 50.99 34.74 25.50 37.96
Vanilla 360M 315M 32 5.0e+18 6.0B - - 3.0097 25.17 32.10 63.22 48.62 36.01 26.69 38.63
Recursive 360M 118M 1+10+1 5.0e+18 6.0B M-Cyc 3 3.0722 23.29 31.19 62.62 51.30 35.85 25.99 38.37
MoR 360M 118M 1+10+1 5.0e+18 9.0B M-Cyc 3 2.9161 28.33 34.53 63.22 51.07 36.70 26.98 40.14
Vanilla 360M 315M 32 16.5e+18 19.8B - - 2.7824 31.94 37.92 66.10 51.30 39.70 27.95 42.49
Recursive 360M 118M 1+10+1 16.5e+18 19.8B M-Cyc 3 2.8466 29.75 35.92 64.91 51.46 39.12 27.18 41.39
MoR 360M 118M 1+10+1 16.5e+18 29.7B M-Cyc 3 2.7924 33.15 37.94 66.97 52.09 38.46 27.49 42.68

Vanilla 730M 654M 26 2.0e+18 1.2B - - 3.7164 07.74 26.58 57.62 51.14 29.74 24.46 32.88
Recursive 730M 252M 1+8+1 2.0e+18 1.2B M-Cyc 3 3.8136 05.53 26.25 55.77 50.59 29.88 24.63 32.11
MoR 730M 252M 1+8+1 2.0e+18 1.8B M-Cyc 3 3.3300 17.93 28.74 59.30 51.46 33.14 25.37 35.99
Vanilla 730M 654M 26 5.0e+18 3.1B - - 3.0821 22.05 31.99 62.68 50.67 35.88 26.12 38.23
Recursive 730M 252M 1+8+1 5.0e+18 3.1B M-Cyc 3 3.1640 18.51 30.72 62.13 47.83 35.97 25.84 36.83
MoR 730M 252M 1+8+1 5.0e+18 4.5B M-Cyc 3 3.0067 26.18 32.76 62.46 50.91 36.93 26.37 39.27
Vanilla 730M 654M 26 16.5e+18 10.1B - - 2.7048 34.50 40.29 66.81 49.49 40.82 28.66 43.43
Recursive 730M 252M 1+8+1 16.5e+18 10.1B M-Cyc 3 2.7886 30.76 37.84 65.51 52.41 39.26 27.51 42.21
MoR 730M 252M 1+8+1 16.5e+18 14.9B M-Cyc 3 2.7438 32.93 39.55 66.32 54.38 40.00 28.09 43.55

Vanilla 1.7B 1.61B 24 2.0e+18 0.6B - - 5.1349 00.00 24.96 51.03 51.38 25.75 23.07 29.37
Recursive 1.7B 0.67B 1+8+1 2.0e+18 0.5B M-Cyc 3 5.3277 00.00 25.27 51.36 48.62 26.52 22.98 29.13
MoR 1.7B 0.67B 1+8+1 2.0e+18 0.8B M-Cyc 3 4.1175 01.44 25.80 53.97 49.64 27.56 24.08 30.42
Vanilla 1.7B 1.61B 24 5.0e+18 1.5B - - 3.6926 08.33 26.84 57.29 51.30 29.72 24.51 33.00
Recursive 1.7B 0.67B 1+8+1 5.0e+18 1.3B M-Cyc 3 3.8876 03.14 26.57 54.73 49.17 29.01 24.49 31.19
MoR 1.7B 0.67B 1+8+1 5.0e+18 2.0B M-Cyc 3 3.2905 17.62 28.32 59.03 49.80 32.14 25.28 35.37
Vanilla 1.7B 1.61B 24 16.5e+18 4.8B - - 2.8658 26.94 35.61 64.74 50.59 38.55 26.81 40.54
Recursive 1.7B 0.67B 1+8+1 16.5e+18 4.5B M-Cyc 3 3.0042 23.25 32.09 62.95 50.75 37.64 26.53 38.87
MoR 1.7B 0.67B 1+8+1 16.5e+18 6.5B M-Cyc 3 2.8316 28.10 36.18 64.64 50.99 38.68 27.25 40.97

26

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

D. Details of Experimental Settings for Throughput Measurement

We implement a continuous depth-wise batching inference system (Bae et al., 2024; Hooper et al., 2023)
to evaluate decoding throughput of MoR models. Queries are enqueued and scheduled dynamically during
decoding using 1K samples from the FineWeb-Edu validation set. In particular, for MoR, when some queries exit
early, the vacant slots in the batch are immediately filled with new queries waiting in the queue, maintaining
a fully utilized batch at all times.
We compare the throughput of Vanilla and MoR models (at a 360M parameter scale) for generating a

certain length of tokens per sample, where the number is sampled from a normal distribution with a mean of
256, starting without any input prefix. The speeds of the MoR models are normalized against the speed of the
Vanilla Transformer. For pretraining MoR-4 models, we add two additional layers (34 layers in total) before
applying recursion. This ensures the total effective depth is divisible by the recursion number (specifically for
the Middle-Cycle strategy). Consequently, the speed comparison for MoR-4 is made against a modified vanilla
model that includes these two extra layers, resulting in a total of 34 layers (32 original layers + 2 added layers).
We use two batching settings: (1) a fixed batch size of 32 and (2) a relative maximum batch size, derived

by multiplying 32 by the ratio of the maximum batch sizes of vanilla and MoR models. Specifically, based on
the H100 GPU’s VRAM size, we calculated the maximum batch sizes by considering model parameters and
their KV cache memory. For simplicity, we omit the memory size from the hidden states at the current position.
Under these adaptive conditions, MoR-2 supports a batch size of 42, MoR-3 supports 48, and MoR-4 supports
up to 51. By employing recursion-wise KV caching, MoR allows a substantial increase in batch size stemming
from its reduced parameter and KV cache memory footprint.
For implementation, we use a queue to enable continuous depth-wise batching and employ FlashAttention

2 (Dao, 2023) to support variable-length KV caches within a batch. We adopt a static-sized cache where each
position is updated over time, since this is compatible with torch.compile (Paszke et al., 2019) to further
optimize inference speeds. Furthermore, mimicking real-world deployment scenarios (Kwon et al., 2023; Zhong
et al., 2024), we decouple the transformer block phase from the rest of the computation by pre-processing the
input embeddings or the first non-shared layer before passing into the transformer blocks. Then, we measured
the actual time taken during the forward pass. Note that we include a warmup stage by running the model for
100 iterations before actual measurement, in order to obtain stable timing results. For further optimization,
tokens that exited early were accumulated up to the maximum batch size before being processed by the last
non-shared layer, classifier, and embedding layers (including the non-shared first layer in the case of MoR
models). After this, we queue them for sequential batching by following a FIFO (First-In, First-Out) strategy.
For implementation convenience, we exclude the time spent on caching and updating for KV pairs, as these
aspects can be significantly optimized through various engineering techniques (Kwon et al., 2023). We leave a
more precise speed comparison, which accounts for these considerations, as future work.

27

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

E. Expanded Results of Parameter Sharing Strategy

This section complements the ablation in §4.1 by providing the full quantitative panorama behind Figure 4b.
We revisit the four weight-tying schemes—Cycle, Sequence, Middle-Cycle, and Middle-Sequence—on two base
model scales (135M and 360M non-embedding parameters) and two different recursion depths (𝑁𝑟 = 2 and 3).
All models were trained from scratch for 10B tokens under identical optimization hyperparameters. Validation
NLL on FineWeb-Edu and averaged few-shot accuracy over six benchmarks are summarized in Table 8.

Middle-Cycle is consistently the safest choice. For the 360M models, Middle-Cycle achieves the lowest NLL
at both depths (𝑁𝑟 = 2 and 𝑁𝑟 = 3) and also shows the largest improvement in average accuracy compared
to vanilla reduced models. For the 135M models, while Cycle is slightly ahead at two recursion setting (3.0071
vs. 3.0330), Middle-Cycle overtakes when recursion depth rises (3.1048 vs. 3.1154) and shows a steadier
accuracy profile. Meanwhile, pure Sequence sharing records the worst NLL in all four settings, and its accuracy
gap widens with recursion depth. The Middle strategy slightly improves the performance of the Sequence, but
it still performs worse than the Cycle-based methodology. We visualized the results in Figure 6.

Table 8: Comparison of parameter-sharing strategies (Cycle, Sequence, Middle-Cycle, Middle-Sequence) across two model
scales (135M and 360M) and two recursion depths (𝑁𝑅 = 2 and 𝑁𝑅 = 3). All models are pretrained from scratch on
10B tokens. We report validation negative log-likelihood (NLL) on FineWeb-Edu and few-shot accuracy across six tasks.
Middle-Cycle consistently outperforms other strategies in both NLL and average task accuracy, especially at higher recursion
depth. We highlight the optimal strategy for each setting in gray.

Pretrain Recursion NLL ↓ Few-shot Accuracy ↑

Base Model N-Emb 𝑁𝐿 𝑁𝑡𝑜𝑘 Share Loop FineWeb LD HS PQ WG ARC MMLU Avg
Vanilla 135M 106M 30 10B - - 3.0323 24.14 31.12 61.15 52.01 34.74 25.95 38.19
Vanilla 135M 53M 15 10B - - 3.0818 23.64 30.10 60.94 50.99 35.38 25.93 37.83
Vanilla 135M 35M 10 10B - - 3.1582 21.46 29.30 60.01 52.01 34.40 25.53 37.12
Vanilla 135M 53M 15 10B Cyc 2 3.0071 25.52 31.25 61.10 50.99 36.08 26.11 38.51
Vanilla 135M 53M 15 10B Seq 2 3.1093 22.39 29.60 61.10 50.12 34.46 25.72 37.23
Vanilla 135M 57M 1+14+1 10B M-Cyc 2 3.0330 23.40 31.20 61.59 50.59 35.44 25.54 37.96
Vanilla 135M 57M 1+14+1 10B M-Seq 2 3.0991 21.70 30.06 60.45 49.41 35.20 25.74 37.09
Vanilla 135M 35M 10 10B Cyc 3 3.1154 21.42 30.14 60.61 49.72 34.15 25.57 36.94
Vanilla 135M 35M 10 10B Seq 3 3.1637 19.99 29.39 59.25 51.62 33.79 25.32 36.56
Vanilla 135M 39M 1+9+1 10B M-Cyc 3 3.1048 22.41 30.35 61.04 49.01 34.80 25.91 37.26
Vanilla 135M 39M 1+9+1 10B M-Seq 3 3.1602 20.69 29.35 61.43 51.30 34.40 25.51 37.11

Vanilla 360M 315M 32 10B - - 2.8471 27.27 34.78 64.20 52.80 38.29 26.72 40.68
Vanilla 360M 157M 16 10B - - 2.8908 27.01 33.49 64.42 52.09 37.40 26.54 40.16
Vanilla 360M 98M 10 10B - - 2.9449 26.41 32.93 63.38 50.36 37.15 26.48 39.45
Vanilla 360M 157M 16 10B Cyc 2 2.8487 28.47 34.79 63.06 49.96 37.38 26.81 40.08
Vanilla 360M 157M 16 10B Seq 2 2.9467 26.33 32.49 62.89 52.41 36.37 26.24 39.46
Vanilla 360M 167M 1+15+1 10B M-Cyc 2 2.8295 28.59 34.98 64.53 50.51 39.68 27.20 40.91
Vanilla 360M 167M 1+15+1 10B M-Seq 2 2.9303 26.14 32.71 62.79 51.38 36.31 25.73 39.18
Vanilla 360M 98M 10 10B Cyc 3 2.9363 25.87 32.98 62.89 50.28 36.35 26.54 39.15
Vanilla 360M 98M 10 10B Seq 3 3.0245 24.55 31.48 63.11 49.25 35.65 25.73 38.30
Vanilla 360M 118M 1+10+1 10B M-Cyc 3 2.8760 28.51 34.89 64.31 50.51 39.51 27.20 40.82
Vanilla 360M 118M 1+10+1 10B M-Seq 3 2.9753 24.18 31.89 62.08 49.72 36.47 26.27 38.44

Behavior under continued pre-training (up-training). Table 9 extends the study by “up-training” models—
continuing from open-sourced SmolLM (Allal et al., 2024) checkpoints for an additional 5B tokens. Both Middle
strategies demonstrate superior performance across all settings, and notably, they significantly outperform the
reduced baseline models that are initialized in the same manner but without recursion. The other strategies
reach a performance plateau earlier, suggesting that they have limited room for further improvement in capacity.

28

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

Seq
M-Seq
Cyc
M-Cyc

N
eg

. L
og

 L
ik

el
ih

oo
d

2.7

2.8

2.9

3.0

3.1

3.2

135M 360M

(a) Recursion of two (𝑁𝑅 = 2)

Seq
M-Seq
Cyc
M-Cyc

N
eg

. L
og

 L
ik

el
ih

oo
d

2.7

2.8

2.9

3.0

3.1

3.2

3.3

135M 360M

(b) Recursion of three (𝑁𝑅 = 3)

Figure 6: Validation negative log-likelihood (lower is better) on FineWeb-Edu for four parameter-sharing strategies. Bars are
grouped by model capacity (135M vs. 360M parameters). Middle-Cycle consistently attains the lowest NLL, with its margin
widening as either model size or depth increases. The horizontal dashed lines mark the untied (non-sharing) baselines:
the lower red line represents the full capacity model, while the upper black line represents a parameter-matched reduced
model with a footprint equal to the unique trainable parameter sizes of the recursive model.

Table 9: Uptraining results across four parameter sharing strategies. Models are trained on 5B tokens from FineWeb-Edu
and evaluated by train NLL and few-shot accuracy across six benchmarks. ARC denotes average of ARC-Easy and
ARC-Challenge tasks, MMLU denotes the MMLU-Cont task. We highlight the optimal strategy for each setting in gray.

Pretrain Recursion NLL ↓ Few-shot Accuracy ↑

Base Model N-Emb 𝑁𝐿 𝑁𝑡𝑜𝑘 Share Init Loop FineWeb LD HS PQ WG ARC MMLU Avg
Vanilla 360M 315M 32 5B - - - 2.4825 41.67 50.63 70.35 55.09 46.99 30.82 49.26
Vanilla 360M 157M 16 5B - Step 1 2.7168 31.85 37.59 64.74 53.20 41.06 27.34 42.63
Vanilla 360M 157M 16 5B Cyc Avg 1 2.8603 22.14 30.36 60.07 48.22 34.99 25.56 36.89
Vanilla 360M 157M 16 5B Seq Avg 1 2.7919 25.40 32.35 62.30 50.12 35.88 26.19 38.71
Vanilla 360M 98M 10 5B - Step 1 2.8915 26.63 35.03 64.42 52.09 38.75 26.86 40.63
Vanilla 360M 98M 10 5B Cyc Avg 1 3.0512 23.19 31.27 62.30 51.22 36.71 26.29 38.50
Vanilla 360M 98M 10 5B Seq Avg 1 2.9915 25.67 32.21 62.30 51.38 36.68 26.56 39.14
Vanilla 360M 157M 16 5B Cyc Step 2 2.7165 31.30 37.68 64.91 52.17 39.29 27.53 42.15
Vanilla 360M 157M 16 5B Cyc Avg 2 2.8263 23.21 30.52 60.55 50.28 36.01 25.50 37.68
Vanilla 360M 157M 16 5B Cyc Lower 2 2.8024 27.67 34.71 63.49 49.88 38.12 26.87 40.13
Vanilla 360M 157M 16 5B Cyc Upper 2 2.7915 18.26 34.88 63.06 51.85 39.27 26.88 39.03
Vanilla 360M 157M 16 5B Cyc Rand 2 2.7575 25.29 34.78 61.64 52.01 38.09 26.62 39.74
Vanilla 360M 157M 16 5B Seq Step 2 2.6862 34.14 42.49 67.90 53.35 43.24 28.80 44.99
Vanilla 360M 157M 16 5B Seq Avg 2 2.7508 29.01 34.13 63.60 52.09 36.31 26.58 40.29
Vanilla 360M 157M 16 5B Seq Lower 2 2.8300 27.50 33.28 63.38 51.38 37.44 26.32 39.88
Vanilla 360M 157M 16 5B Seq Upper 2 2.7498 30.49 40.07 65.61 52.25 40.28 28.17 42.81
Vanilla 360M 157M 16 5B Seq Rand 2 2.7153 32.00 41.31 66.10 53.35 42.13 28.52 43.90
Vanilla 360M 167M 1+15+1 5B M-Cyc Step 2 2.6800 35.47 42.39 67.19 50.99 42.54 28.79 44.56
Vanilla 360M 167M 1+15+1 5B M-Cyc Avg 2 2.7314 33.81 40.42 66.87 51.78 41.68 28.17 43.79
Vanilla 360M 167M 1+15+1 5B M-Cyc Lower 2 2.7449 30.76 39.50 66.16 50.99 41.12 28.07 42.77
Vanilla 360M 167M 1+15+1 5B M-Cyc Upper 2 2.6605 34.41 43.74 67.46 53.20 43.75 28.93 45.25
Vanilla 360M 167M 1+15+1 5B M-Cyc Rand 2 2.6730 35.65 43.04 67.74 52.17 42.60 28.62 44.97
Vanilla 360M 167M 1+15+1 5B M-Seq Step 2 2.6627 35.09 43.34 67.57 51.22 43.66 28.91 44.97
Vanilla 360M 167M 1+15+1 5B M-Seq Avg 2 2.7143 33.92 40.93 66.49 51.70 40.72 28.24 43.66
Vanilla 360M 167M 1+15+1 5B M-Seq Lower 2 2.7696 30.74 38.36 65.94 51.78 41.27 27.73 42.64
Vanilla 360M 167M 1+15+1 5B M-Seq Upper 2 2.6931 32.66 42.35 67.14 52.80 42.83 28.49 44.38
Vanilla 360M 167M 1+15+1 5B M-Seq Rand 2 2.6908 35.07 42.03 66.32 53.75 43.11 28.42 44.78
Vanilla 360M 98M 10 5B Cyc Step 3 2.8901 27.46 35.26 63.82 51.54 39.35 27.44 40.81
Vanilla 360M 98M 10 5B Seq Step 3 2.8258 30.43 37.37 63.76 52.33 40.55 27.65 42.02
Vanilla 360M 118M 1+10+1 5B M-Cyc Step 3 2.7735 31.38 39.31 65.51 50.51 40.70 27.65 42.51
Vanilla 360M 118M 1+10+1 5B M-Seq Step 3 2.7678 31.67 39.23 65.89 52.09 40.65 27.90 42.91
Vanilla 360M 118M 1+10+1 5B M-Cyc Upper 3 2.8100 28.86 37.61 65.51 52.57 41.44 28.17 42.36

29

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

F. Expanded Results of Design Choices for Router

F.1. Details of Design Configurations

We investigate various router design choices to optimize performance and stability. Specifically, we tune the
coefficient values controlling the strength of auxiliary or balancing loss terms (Coeff), and adjust the scaling
factor applied after the router function (𝛼) to modulate routing weights. Moreover, we test different activation
functions (Func), such as sigmoid or softmax, are evaluated, with architectural variations (Arch) of the router
network, including linear layer, 2-layer MLP with GELU activation, Wide-MLP that expands the hidden layer
size by a factor of four.
We also incorporate several techniques to stabilize training. To improve training stability, we utilize the

router z-loss (Zoph et al., 2022), which penalizes large logits produced by the gating network. Large logits can
cause numerical instability and hinder effective training of the router. The z-loss is computed as follows:

𝐿𝑧(𝑥) =
1

𝐵

𝐵∑︁
𝑖=1

⎛⎝log

𝑁𝑟∑︁
𝑗=1

𝑒𝑥
(𝑖)
𝑗

⎞⎠2

,

where 𝐵 is the number of tokens in the batch, 𝑁𝑟 is the number of experts, and 𝑥 ∈ R𝐵×𝑁𝑟 denotes the logits
input to the router. This regularization encourages the gating network to produce smaller logits, promoting
more stable and reliable routing decisions.

F.2. Router Performance Evaluation Metrics

Expert-choice routing. We evaluate dead token ratio and sampling accuracy to assess the router’s selection
behavior. The dead token ratio measures the proportion of tokens at specific positions within the batch that are
consistently unselected during the final recursion step, indicating a positional bias where certain token positions
are systematically neglected by the router. The sampling accuracy how well the router used during inference
predicts whether a token belongs to the top-𝑘 tokens identified during training, reflecting the router’s ability
to consistently select the most relevant tokens. Ideally, high sampling accuracy with a low dead token ratio
indicates a router that both identifies important tokens accurately and maintains diversity in token selection.

Token-choice routing. We evaluate the router’s ability to balance token assignments across experts using
MaxVio (maximum violation) and entropy metrics. MaxVio (Wang et al., 2024) measures the load imbalance
across experts:

MaxVio =
max𝑖 Load𝑖 − Load𝑖

Load𝑖
,

where Load𝑖 denotes the actual number of tokens assigned to the 𝑖-th expert, and Load𝑖 represents the expected
load per expert assuming perfect balance.
To measure the diversity of token assignments across experts, we also compute the Entropy of the average

selection probabilities for each expert:

𝐻 = −
𝑁𝑟∑︁
𝑖=1

𝑝𝑖 log 𝑝𝑖,

where 𝑝𝑖 is the average probability of selecting the 𝑖-th expert over all tokens in the evaluation batch, and 𝑁𝑟

is the total number of experts. A higher entropy indicates a more uniform distribution of tokens among experts,
reflecting balanced and diverse routing decisions.

F.3. Extended Evaluation Results of Router Designs

The results presented in Table 10 indicate that although both the auxiliary router and auxiliary loss methods
enhance sampling accuracy, they are also associated with high dead token ratios. In particular, some auxiliary
router variants exhibit dead token ratios as high as 66.7%, suggesting that the router always selects tokens from
the same positions across inputs, reflecting a positional bias. Notably, employing a linear router architecture in
conjunction with auxiliary loss effectively reduces the dead token ratio without compromising sampling accuracy.

30

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

Results from Table 11 reveal that applying an explicit balancing loss significantly reduces MaxVio and
increases entropy, leading to improved load balance without sacrificing overall model performance. Loss-free
approaches, while simpler, tend to show higher MaxVio and lower entropy, indicating less balanced token
routing. Architectures such as MLP and Linear routers perform comparably under balancing loss, with z-loss
often contributing to improved routing stability and model accuracy. Nevertheless, it still struggles to achieve
balance during quite long initial stage. The heterogeneity among the experts, stemming from the use of
computation blocks with varying recursion depths as experts, likely complicates load balancing.

Table 10: Ablation results on using expert-choice router with different routing configurations. We use the recursion-wise KV
caching strategy by default. Coeff denotes coefficient values for auxiliary loss term, and 𝛼 denotes scaling term after router
function. Dead token ratio are measured within evaluation batch size of 500. Warmup refers to gradually decreasing the
capacity from 1.0 to desired value over warmup steps. The last highlighted row represents a chosen final strategy, and inter-
mediate best-performing designs (based on performance and routing metrics) are highlighted to illustrate how it was derived.

Expert-choice Configurations RouterMetrics NLL ↓ Few-shot Accuracy ↑

Sampling Coeff Func 𝛼 Arch Warmup z-loss Dead ↓ Samp-Acc ↑ FineWeb LD HS PQ WG ARC MMLU Avg
- - rand - - ✗ ✗ 0.0 - 2.9335 26.0 33.1 61.6 52.3 35.8 26.2 39.1
AuxRouter - - - MLP ✗ ✗ 66.7 50.0 NaN 0.0 25.04 49.5 49.6 23.9 23.0 28.5
AuxRouter - 𝜎 0.1 MLP ✗ ✗ 0.0 89.2 2.8893 26.1 33.8 62.0 51.5 36.6 26.4 39.4
AuxRouter - 𝜎 1.0 MLP ✗ ✗ 66.7 50.0 2.8867 26.4 33.6 63.0 52.4 37.0 24.1 39.8
AuxRouter - tanh 0.1 MLP ✗ ✗ 66.7 98.6 2.8720 13.9 31.8 60.7 49.3 35.8 25.8 36.2
AuxRouter - tanh 1.0 MLP ✗ ✗ 66.7 97.0 3.0624 18.26 29.7 60.1 50.9 34.6 25.5 36.5
Aux Loss 0.01 - - MLP ✗ ✗ 66.7 50.0 NaN 0.0 25.04 49.5 49.6 23.9 23.0 28.5
Aux Loss 0.01 𝜎 0.1 MLP ✗ ✗ 0.0 99.6 2.8967 24.8 33.6 63.3 50.3 36.6 26.6 39.2
Aux Loss 0.01 𝜎 1.0 MLP ✗ ✗ 65.9 100.0 2.9189 12.0 31.6 59.4 51.5 33.2 25.3 35.5
Aux Loss 0.01 tanh 0.1 MLP ✗ ✗ 32.8 99.7 2.9426 23.5 32.4 62.4 49.8 35.6 26.0 38.3
Aux Loss 0.01 tanh 1.0 MLP ✗ ✗ 0.0 98.8 3.2743 16.4 28.14 58.8 52.2 31.6 24.8 35.3
Aux Loss 0.1 𝜎 0.1 MLP ✗ ✗ 0.0 99.8 3.0416 21.5 31.0 61.8 50.3 35.0 26.0 37.6
Aux Loss 0.001 𝜎 0.1 MLP ✗ ✗ 0.0 99.1 2.8816 27.6 34.3 63.0 51.6 36.7 26.5 40.0
Aux Loss 0.001 tanh 0.1 MLP ✗ ✗ 0.0 56.4 2.9933 25.0 32.3 61.5 51.5 36.6 26.0 38.8
Aux Loss 0.001 𝜎 0.1 Linear ✗ ✗ 0.1 99.2 2.8667 27.4 34.6 63.2 51.5 37.2 26.5 40.1
Aux Loss 0.001 𝜎 0.1 W-MLP ✗ ✗ 0.4 99.2 2.8716 27.8 33.9 62.4 49.9 36.3 26.3 39.4
Aux Loss 0.001 𝜎 0.1 Linear ✓ ✗ 4.9 99.1 2.8744 26.0 33.9 62.0 51.2 36.1 26.1 39.2
Aux Loss 0.001 𝜎 0.1 Linear ✗ ✓ 0.0 99.3 2.8824 26.9 34.0 63.8 52.3 36.8 26.4 40.0

Table 11: Ablation results on token-choice router under different routing configurations. We use the recursion-wise KV
caching strategy by default. Coeff denotes coefficient for balancing loss term, or updating coefficient (𝑢) for loss-free
algorithm. The last highlighted row represents a chosen final strategy, but we added z-loss back in with a small coefficient
of 1e-3 since it often stabilizes load balancing. The intermediate best-performing designs (based on performance and
routing metrics) are highlighted to illustrate how it was derived.

Token-choice Configurations RouterMetrics NLL ↓ Few-shot Accuracy ↑

Balancing Coeff Func 𝛼 Arch Z-loss MaxVio ↓ Entropy ↑ FineWeb LD HS PQ WG ARC MMLU Avg
- - rand - - ✓ 0.007 1.099 3.0268 24.8 32.0 61.4 52.2 35.5 26.1 38.7
Loss 0.1 soft 1.0 MLP ✓ 0.200 1.076 3.0239 24.2 31.9 61.4 51.5 35.7 26.2 38.5
Loss 0.01 soft 1.0 MLP ✓ 0.682 0.921 2.9118 28.0 33.3 62.8 49.7 36.4 26.2 39.4
Loss-free 0.01 soft 1.0 MLP ✓ 1.788 0.297 2.9078 25.5 32.5 61.3 52.3 36.1 26.0 38.9
Loss-free 0.01 𝜎 0.1 MLP ✓ 0.956 0.646 3.1144 21.8 29.8 60.3 51.6 34.0 25.7 37.2
Loss-free 0.01 𝜎 1.0 MLP ✓ 0.918 0.749 3.0188 23.4 31.3 59.9 50.0 35.2 25.8 37.6
Loss-free 0.001 soft 1.0 MLP ✓ 0.852 0.915 2.9081 25.8 33.6 62.8 50.6 37.5 26.7 39.5
Loss-free 0.001 𝜎 0.1 MLP ✓ 1.281 0.551 2.9165 23.9 33.1 61.2 51.6 37.3 26.2 38.9
Loss-free 0.001 𝜎 1.0 MLP ✓ 0.542 0.941 3.0188 24.9 32.0 61.9 51.4 35.5 25.9 38.6
Loss 0.1 soft 1.0 Linear ✓ 0.492 0.960 2.9974 23.7 31.3 62.2 50.3 36.7 26.0 38.4
Loss 0.1 soft 1.0 W-MLP ✓ 0.384 1.037 3.0293 25.3 31.5 62.2 51.2 36.4 26.3 38.8
Loss 0.1 soft 1.0 Linear ✗ 0.266 1.056 2.9358 25.7 32.6 61.9 51.7 36.4 26.5 39.1

31

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

G. Expanded Results of KV Cache Sharing Mechanism

G.1. Key Value Representation Trends in Recursive Transformers

Sharing KV caches across model depths has emerged as a promising approach to improve inference throughput
in Vanilla Transformers (Brandon et al., 2024). This technique can reduce the memory footprint required for KV
caches, enabling larger inference batch sizes. Significant speedups can be achieved by skipping the KV projection
and even prefill operations at shared depths in specific designs (Sun et al., 2024). Due to the high degree of
freedom in Vanilla models—where trainable parameters can be well optimized for shared caches—these models
exhibit only marginal performance drops when KV caches are shared between adjacent layers. In contrast, Recur-
sive Transformers have far fewer parameters available for being optimized to tied key-value states. Nevertheless,
we hypothesize that similar patterns may emerge between shared attention blocks. To investigate this, we
decomposed the KV states from pretrained Recursive Transformers into magnitude and directional components.
As shown in Figure 7, the sharing of key and value projection layers across recursion depths leads to clear

recursive patterns in the magnitude values. Although the magnitudes of hidden states tend to increase, the pro-
jection layers appear to be trained to produce similar signal sizes at corresponding depths within each recursion.

Av
er

ag
e

L2
 N

or
m

0

100

200

300

400

500

Layer Index
0 8 16 24 32

(a) Hidden states

8

10

12

14

16

Layer Index
0 8 16 24 32

(b) Key states

0

4

8

12

Layer Index
0 8 16 24 32

(c) Value states

Figure 7: Average L2 norm magnitude of (a) hidden states, (b) key states, and (c) value states across layers in a Middle-
Cycled Recursive Transformer 360M with 3 recursion steps. Note that the last hidden states correspond to the final hidden
states after the last layer normalization.

When we measured the cosine similarity in Figure 8, distinct diagonal patterns emerge, suggesting that
shared projection layers generate highly similar key and value representations. While sharing value states
across recursions appears to be more challenging than sharing key states, these findings suggest that the
performance drop from KV cache sharing can be marginal even in Recursive Transformers.

0

0

8

8

16

16

24

24
32

32

La
ye

r I
nd

ex

Layer Index

(a) Hidden states

0

0

8

8

16

16

24

24
31

31
Layer Index

(b) Key states

0 1.0

0.0

0.5

0

8

8

16

16

24

24
31

31
Layer Index

(c) Value states

Figure 8: Cosine similarity matrices showing the layer-wise similarity of (a) hidden states, (b) key states, and (c) value
states in Recursive Transformer with Middle-Cycle strategy and recursion depth 3. Results are from a 360M parameter
model with 32 layers. The hidden states matrix includes the final hidden states after the last layer normalization.

32

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

G.2. Performance Comparison of KV Sharing Strategy

Experimental results of key-value cache sharing. In Table 12, we present the performance results when
applying KV cache sharing to Vanilla, Recursive, and MoR models. Especially, we tested various strategies for
KV caches, including Cycle or Sequence strategies that share the same concepts as parameter sharing (see §A.1
for details). Interestingly, KV cache sharing even improves the performance of vanilla models, where sharing
acts as a regularization technique. In case of recursive models, we align the sharing strategy for parameters
and KV caches. Despite some variations in the results after applying KV sharing, the Middle-Cycle strategy (the
best parameter sharing strategy) showed a slight perplexity drop, albeit not substantial.
When moving to MoR models, they still introduced a small amount of degradation in our best settings

(expert-choice router). However, considering the reduced parameter sizes and cache sizes, we believe this minor
drop is acceptable. Furthermore, we explored an alternative sharing strategy (indicated by †) that utilized
shared caches for inactive (unselected) positions while updating active positions through actual computation.
This method is analogous to a recursive caching scheme but initializes inactive positions with key-value pairs
from the first recursive iteration. Although it did not provide additional benefits, it is still worth exploring
combinations of KV sharing and actual updates.

Table 12: Comparison of KV cache sharing strategies across Vanilla, Recursive, and MoR Transformers. Models are pretrained
on 10B tokens of FineWeb-Edu, and evaluated using negative log-likelihood (NLL) on train set and few-shot accuracy across
benchmarks. KV sharing denotes use of recursive KV sharing mechanism. If MoR is mentioned without further specification
of KV sharing strategy, it implies the use of the recursion-wise caching strategy. †It indicates training with hybrid KV
sharing that leverages shared caches for inactive positions while updating active ones through actual computation.

Pretrain Recursion MoR KV Sharing NLL ↓ Few-shot Accuracy ↑

Models N-Emb 𝑁𝐿 Share Loop Type Share Loop FineWeb LD HS PQ WG ARC MMLU Avg
Vanilla 315M 32 - - - - - 2.8471 27.3 34.8 64.2 52.8 38.3 26.7 40.7
Vanilla 315M 32 - - - Seq 2 2.7848 30.0 36.5 64.6 50.7 39.4 26.9 41.3
Vanilla 315M 32 - - - Cyc 2 2.7650 30.0 36.7 65.2 51.1 39.6 27.5 41.7
Vanilla 295M 30 - - - - - 2.8069 29.1 35.6 65.1 50.4 38.5 27.3 41.0
Vanilla 295M 30 - - - Seq 3 2.7879 28.3 36.4 64.3 52.7 39.4 27.3 41.4
Vanilla 295M 30 - - - Cyc 3 2.7890 28.9 36.5 64.6 51.4 39.0 27.6 41.3
Recursive 157M 16 Seq 2 - - - 2.9467 26.3 32.5 62.9 52.4 36.4 26.2 39.5
Recursive 157M 16 Seq 2 - Seq 2 2.8904 26.4 33.4 64.0 51.0 37.0 26.9 39.8
Recursive 157M 16 Cyc 2 - - - 2.8487 28.5 34.8 63.1 50.0 37.4 28.8 40.1
Recursive 157M 16 Cyc 2 - Cyc 2 2.8577 26.2 34.5 64.2 51.4 37.3 26.9 40.1
Recursive 167M 1+15+1 M-Cyc 2 - - - 2.8295 28.6 35.0 64.5 50.5 39.7 27.2 40.9
Recursive 167M 1+15+1 M-Cyc 2 - M-Cyc 2 2.8451 27.3 34.7 63.7 50.5 37.8 27.0 40.2
Recursive 98M 10 Seq 3 - - - 3.0245 24.6 31.5 63.1 49.3 35.7 25.7 38.3
Recursive 98M 10 Seq 3 - Seq 3 2.9554 24.2 32.3 62.5 52.7 36.6 26.2 39.1
Recursive 98M 10 Cyc 3 - - - 2.9363 25.9 33.0 62.9 50.3 36.4 26.5 39.2
Recursive 98M 10 Cyc 3 - Cyc 3 2.9155 24.1 32.9 62.4 51.2 37.4 26.7 39.1
Recursive 118M 1+10+1 M-Cyc 3 - - - 2.8760 28.5 34.9 64.3 50.5 39.5 27.2 40.8
Recursive 118M 1+10+1 M-Cyc 3 - M-Cyc 3 2.8854 27.3 33.8 63.3 52.3 37.5 26.8 40.2
MoR 118M 1+10+1 M-Cyc 3 Expert - - 2.8667 27.4 34.6 63.2 51.5 37.2 26.5 40.1
MoR 118M 1+10+1 M-Cyc 3 Expert M-Cyc 3 2.8895 34.0 61.6 50.2 26.0 36.5 27.0 39.2
MoR 118M 1+10+1 M-Cyc 3 Expert M-Cyc† 3 2.8653 24.8 34.3 62.0 50.1 36.7 26.7 39.1
MoR 118M 1+10+1 M-Cyc 3 Token - - 2.9358 25.7 32.6 61.9 51.7 36.4 26.5 39.1
MoR 118M 1+10+1 M-Cyc 3 Token M-Cyc 3 2.9155 25.7 32.6 61.8 49.4 36.2 26.0 38.6

33

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

Relaxation for key-value sharing constraints. We also investigated relaxing the constraints on KV sharing in
Table 13, similar to the relaxation approach in Bae et al. (2024) for parameter sharing constraints. Specifically,
we first re-examined four relaxation techniques for standard Recursive Transformers with very small ranks (Hu
et al., 2022; Liu et al., 2024c) or prefix lengths (Liu et al., 2021). We also experimented with the position
encoding (Chen et al., 2025), where trainable embeddings are element-wise multiplied with the output of each
recursion block.
Our results show that these techniques do not provide substantial performance improvements when

pretraining relaxed models from scratch, consistent with prior studies, as they introduce only a limited number
of additional parameters. Although we hypothesize that incorporating prefix-based approaches (such as adding
trainable prefixes to attention) into KV sharing might lead to greater benefits, our experiments did not reveal
substantial differences in this regard. Further exploration of more sophisticated techniques for efficiently
relaxing KV cache sharing constraints remains an open direction for future research.

Table 13: Experimental results of relaxing parameter sharing and KV cache sharing constraints in Recursive Transformers.
All models are trained on FineWeb-Edu with 10B tokens, and we apply the Middle-Cycle parameter sharing for 360M models
with 3 recursion depths. We evaluate them based on training NLL and few-shot accuracy across six benchmarks. Relaxation
types include encoding trainable embeddings on recursion outputs via element-wise multiplication (Enc), applying LoRA
and DoRA to query and value weight matrices, and adaptation prompt tuning (Adapt-P).

Pretrain Relaxation KV Sharing NLL ↓ Few-shot Accuracy ↑

Models N-Emb 𝑁𝐿 Type Rank Len Share Loop FineWeb LD HS PQ WG ARC MMLU Avg
Recursive 118M 1+10+1 - - - - - 2.8854 27.3 33.8 63.3 52.3 37.5 26.8 40.2
Recursive 118M 1+10+1 Enc - - - - 2.8604 27.3 34.6 63.9 53.4 38.6 26.7 40.2
Recursive 124M 1+10+1 LoRA 64 - - - 2.8599 27.3 34.6 64.3 50.9 38.0 26.9 39.7
Recursive 124M 1+10+1 DoRA 64 - - - 2.8945 26.4 33.6 64.4 50.6 37.4 26.5 39.2
Recursive 126M 1+10+1 Adapt-P - 256 - - 2.8626 27.1 34.7 64.0 51.9 37.6 26.8 39.7
Recursive 118M 1+10+1 - - - M-Cyc 3 2.8854 27.3 33.8 63.3 52.3 37.5 26.8 40.2
Recursive 126M 1+10+1 Adapt-P - 256 M-Cyc 3 2.9030 24.5 33.1 63.0 52.2 26.7 37.6 39.5

H. Expanded Qualitative Results

H.1. Analysis on Adaptive Computation Paths

Table 14 illustrates a qualitative analysis of the recursion depth assigned to each subword token. This visu-
alization provides a detailed insight into how tokens within each sample exhibit varying levels of recursive
processing, showcasing the adaptive computation mechanism within the MoR framework. Notably, some tokens
exit early (purple), while others require deeper processing (blue and red), reflecting the model’s ability to
focus more compute on challenging parts of the input.

34

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

Table 14: Visualization of the recursion depth for each subword token, with colors representing the number of recursion
steps: 1 , 2 , and 3 . Each row corresponds to a single sample, offering a clear illustration of the token-level recursion
distribution in practice. We use an MoR model with 𝑁𝑟 = 3, auxiliary loss, and recursion-wise KV caching. This model is
built on a 360M parameter base and trained on 30B tokens.

Sample Text

Sample #1 People who feel comfortable defending their views — def ensively confident — may also eventually
change those views and corresponding behaviors . National Election Studies surveys showed that
defensive confidence predicted def ection in the 2 0 0 6 U . S . House elections , above and beyond
the impact of various demographic and political variables . Moreover , defensive confidence was
also associated with political knowledge and attention to politics and government affairs , but not

Sample #2 2 0 1 4 , 7 : 5 7 AM Space X Falcon 9 - R Rocket Suff ers M alf unction , Self - Dest ruct s During
Test Flight August 2 3 , 2 0 1 4 , 9 : 3 6 AM Texas Ch osen as Site for SpaceX 's First
Commercial Launch pad August 5 , 2 0 1 4 , 1 : 4 4 PM South Carolina Prison Find s C ras hed
Dr one Car rying Drugs , Ph ones August 1 , 2 0 1 4 , 2 : 4 9 PM NASA 's Mars 2 0 2 0
Rover G ains Seven New Instruments for Exploration August 1 , 2 0 1 4 , 1 : 3 0 PM NASA

Sample #3 9 PR New sw ire . All rights reserved A report released Thursday on the Slide Fire in Oak Creek
Canyon doesn 't hold back in laying out the danger facing the burned - out area . The U .
S . Forest Service issued the report Thursday afternoon stating the biggest concern is the st eeper
slopes of Oak Creek Canyon is especially subject to debris flows , rocks l ides , flash flooding and
erosion that could become concentrated flow or a landslide . The report said in smaller streams

Sample #4 Bil bo to accompany the dwar ves to fight the enemy . He says , “ S ar uman believes it is only
great power that can hold evil in check , but that is not what I have found . I found it is the
small everyday deeds of ordinary folk that keep the darkness at bay . Small acts of kindness
and love .” That ’ s what Jesus teaches us as well . Warning us that we would live in dark
times , He reminded us that because of Him we are “ the light of the world ” (Matt . 5 : 1 4)

Sample #5 mitting Plants After four years of research , most of it in total darkness , a Stanford University
plant biologist has discovered that some plants have a system of fiber optics that can transmit
light up and down their tissues in a way similar to the method the telephone company uses
to transmit many of its telephone calls . Dr . D ina Mand oli , seeking to find the light - transmit
ting properties of plants , had to rely on her sense of touch as she placed tissues of oat , m ung

Sample #6 an impression of market power abuses or other market failures . In some cases , however , prices
may spike to higher than usual levels and cause public concern and the need for more public
information . To address such events , the proposed amendment includes an event trigger that
would require the public release of entity - specific information on a much quicker timeframe .
The proposed amendment requires that , when the trigger is exceeded , the portion of every

Sample #7 and spaceflight and spacecraft . covers elementary astronomy , Newton ian mechanics , the Sun
and related physics and spaceflight . Also included are a Spanish translation , 4 6 lesson plans ,
a short but complete math course (al gebra + trig), teachers ' guides , glossary , timelines ,
3 4 5 questions (current tally) by users and their answers , over 1 0 0 problems to solve , and
more . Learning Design Eng ines as Remote Control to Learning Support Environments . Context

Sample #8 a well established role in scientific computing , and a recent increased presence in desktop
computing , it almost certain that contemporary information professionals will encounter Unix
based systems in their work . This workshop is an intermediate level look at the Unix operating
system as compared to the Unix introduction that our S 4 0 1 students receive . We will have a
short review but it will be essential to have the S 4 0 1 - UN IX material internalized as much as

Sample #9 code and will serve as a good introduction to the syntax necessary for creating shell programs .
We will continue by discussing the importance of quoting now that we have used more powerful
met ach ar acters (variable and command subs it itution) and need to control their expansion
(interpretation). Finally , we will end our day revisiting the Unix find utility and looking at some
advanced uses for this indispensable tool . Sl ides for Day 5 (PDF) A program running in Unix

Sample #10 itable D edu ction Lead s to a Sharp Increase of Don ors in Puerto Rico >> Federal : New Director
for K - 1 2 Programs >> Top Read s : Pro ving Conventional Wisdom Wrong (Again) on Char
itable Giving Tax In cent ives Congress is out of session for its August recess . Members are expected
to return on September 8 . Rep . Ryan : No Cap for Char itable D edu ction House Budget Committee
Chairman Paul Ryan (R - W I), who is widely expected to take over as Chairman of the House Ways

35

Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation

H.2. Analysis on Router Weights

To gain insight into the router output distributions, we visualized the results in Figure 9. Our analysis reveals
that various routing mechanisms are optimized to balance expert loads according to the desired capacity.
Notably, expert-choice routers achieved nearly perfect load balancing with the auxiliary loss, resulting in almost
binary values (1 or 0) for selected and unselected tokens, respectively. For the auxiliary router, it was able to
distinguish between selected and unselected tokens to some extent, but still showed overlapping. Since this
strategy allows for different capacity factors during training and inference7, further research into methodologies
that can more distinctly separate inter-cluster variations seems necessary.
Other token-choice strategies also exhibited good balancing properties with reasonable router values, which

are used to refine the outputs of the corresponding recursion computation blocks. However, most cases failed
to converge to optimal load balancing (i.e., these were edge cases where they achieved their own optimal load
balancing), highlighting the challenges of achieving consistent performance in heterogeneous expert settings.

Selected Unselected

N
or

m
al

iz
ed

 C
ou

nt
s

0.0

0.2

0.4

0.6

0.8

1.0

Rec #1
0.0 0.5 1.0

Rec #2
0.0 0.5 1.0

Rec #3
0.0 0.5 1.0

(a) Expert-choice (Auxiliary loss)

Selected Unselected

N
or

m
al

iz
ed

 C
ou

nt
s

0.0

0.2

0.4

0.6

0.8

1.0

Rec #1
0.0 0.5 1.0

Rec #2
0.0 0.5 1.0

Rec #3
0.0 0.5 1.0

(b) Expert-choice (Auxiliary router)

N
or

m
al

iz
ed

 C
ou

nt
s

0.0

0.2

0.4

Rec #1
0.0 0.5 1.0

Rec #2
0.0 0.5 1.0

Rec #3
0.0 0.5 1.0

(c) Token-choice (Balancing loss)

N
or

m
al

iz
ed

 C
ou

nt
s

0.0

0.2

0.4

Rec #1
0.5 0.6

Rec #2
0.5 0.6

Rec #3
0.5 0.6

(d) Token-choice (Loss-free)

Figure 9: Distribution of router weights for selected and unselected tokens at each recursion step in expert-choice and
token-choice MoR (𝑁𝑟=3). All models use the recursion-wise KV caching strategy. The subplots show results for (a)
expert-choice routing with auxiliary loss, (b) auxiliary router, (c) token-choice routing with balancing loss, and (d) loss-free
algorithm. Each subplot uses the best hyperparameter settings identified in Table 4.

7The auxiliary router learns to capture intra-token differences within selected or unselected groups, rather than being biased towards
extreme points.

36

	Introduction
	Method
	Preliminary
	Mixture-of-Recursions
	Routing Strategies: Expert-choice vs. Token-choice
	KV Caching Strategies: Recursion-wise Caching vs. Recursive Sharing

	Experiments
	Main Results
	IsoFLOP Analysis
	Inference Throughput Evaluation

	Ablation Studies
	Parameter Sharing Strategies
	Routing Strategies
	KV Caching Strategies

	Analysis
	Compute-optimal Scaling Analysis
	Routing Analysis
	Test-time Scaling Analysis

	Related Work
	Conclusion
	Limitations and Future Works
	Acknowledgements

	Details of Design Choices for Mixture-of-Recursions
	Parameter-sharing Strategy
	Routing Strategy
	KV Caching Strategy

	Experimental Setup
	Expanded Results of IsoFLOP Analysis
	Details of Experimental Settings for Throughput Measurement
	Expanded Results of Parameter Sharing Strategy
	Expanded Results of Design Choices for Router
	Details of Design Configurations
	Router Performance Evaluation Metrics
	Extended Evaluation Results of Router Designs

	Expanded Results of KV Cache Sharing Mechanism
	Key Value Representation Trends in Recursive Transformers
	Performance Comparison of KV Sharing Strategy

	Expanded Qualitative Results
	Analysis on Adaptive Computation Paths
	Analysis on Router Weights

