arXiv:2508.05004v2 [cs.LG] 27 Aug 2025

R-Zero: Self-Evolving Reasoning LLM from Zero Data) Tencent Al Lab

R-Zero: Self-Evolving Reasoning LLM from Zero Data

Chengsong Huang!?t,Wenhao Yu!", Xiaoyang Wang',Hongming Zhang', Zongxia Li'?,
Ruosen Li'#4, Jiaxin Huang?, Haitao Mi!, Dong Yu!
ITencent Al Seattle Lab, 2Washington University in St. Louis,
3University of Maryland, College Park, “The University of Texas at Dallas
t Core contributors
chengsong@wustl.edu; wenhaowyu@global.tencent.com

Abstract

Self-evolving Large Language Models (LLMs) offer a scalable path toward superintelli-
gence by autonomously generating, refining, and learning from their own experiences.
However, existing methods for training such models still rely heavily on vast human
curated tasks and labels, typically via fine-tuning or reinforcement learning, which poses
a fundamental bottleneck to advancing Al systems toward capabilities beyond human
intelligence. To overcome this limitation, we introduce R-Zero, a fully autonomous
framework that generates its own training data from scratch. Starting from a single
base LLM, R-Zero initializes two independent models with distinct roles — a Challenger
and a Solver. These models are optimized separately and co-evolve through inter-
action: the Challenger is rewarded for proposing tasks near the edge of the Solver’s
capability, and the Solver is rewarded for solving increasingly challenging tasks posed
by the Challenger. This process yields a targeted, self-improving curriculum without
any pre-existing tasks and labels. Empirically, R-Zero substantially improves reasoning
capability across different backbone LLMs, e.g., boosting the Qwen3-4B-Base by +6.49
on math reasoning benchmarks, and +7.54 on general-domain reasoning benchmarks.

C) Code: https://github. com/Chengsong-Huang/R-Zero.

Challenger iterative 1 Challenger lfrahve 2 Challenger iterative N RLVR & SFT Task Solution
Label-Free RL Task Solution

R-Zero (ours) Task Solution

Base Model

37.38

SuperGPQA Math Avg MMLU-Pro

Figure 1: (Left): R-Zero employs a co-evolutionary loop between Challenger and Solver. (Right):
R-Zero achieves strong benchmark gains without any pre-existing tasks or human labels.

1 Introduction

Self-evolving Large Language Models (LLMs) represent a promising frontier for advancing language
intelligence. By autonomously generating, refining, and learning from their own experiences, these

https://github.com/Chengsong-Huang/R-Zero
https://arxiv.org/abs/2508.05004v2

R-Zero: Self-Evolving Reasoning LLM from Zero Data) Tencent Al Lab

models provide a scalable pathway toward artificial superintelligence (Tao et al., 2024; Tan et al.,
2024a). A critical requirement for training such self-evolving LLMs is access to large volumes of
expertly curated tasks and labels, which serve as supervision signals for fine-tuning or reinforcement
learning with verifiable rewards (RLVR) (Shao et al., 2024; DeepSeek-Al et al., 2025). However,
relying on human annotators to create these tasks and labels is not only costly, labor-intensive,
and difficult to scale, but also presents a fundamental bottleneck to advancing Al systems toward
capabilities that could eventually surpass human intelligence (Su et al., 2025; Zhao et al., 2025a).

To reduce dependence on human-curated data, self-generated and label-free methods have been
proposed to eliminate the need for explicit supervision. In particular, label-free RL derives reward
signals directly from the model’s own outputs, such as sequence-level confidence scores (Li et al.,
2025a; Prabhudesai et al., 2025; Huang et al., 2025) and output entropy (Agarwal et al., 2025; Cheng
et al., 2025). However, despite removing the need for explicit labels, label-free methods still relies on
a pre-existing corpus of tasks, which limits its scalability in truly self-evolving settings. On the other
side, self-challenging approaches train LLMs on tasks generated by the models themselves (Zhou
et al., 2025a; Wang et al., 2025a; Zhao et al., 2025a), While promising, many of these methods rely on
external code executors to ensure that the synthesized tasks are both feasible and verifiable. However,
in domains that lack an explicit verification oracle, such as open-ended reasoning, ensuring the
quality and correctness of self-generated data remains a significant challenge.

In this paper, we propose R-Zero, a framework for training reasoning LLMs that can self-evolve
from zero external data. In R-Zero, a single base model is initialized with two roles — a Challenger
and a Solver that are independently optimized but co-evolve throughout the RL process. During
co-evolving, the Challenger is rewarded for generating tasks targeted to be at the edge of Solver’s
current abilities, while the Solver is rewarded for solving increasingly challenging tasks posed by
the Challenger. Framework details are provided in Section 3, but briefly, in the Challenger training
phase, the Challenger is trained via Group Relative Policy Optimization (GRPO) (Shao et al., 2024)
to generate difficult questions. The reward signal is derived from the uncertainty for the frozen
Solver, which is measured by the self-consistency of its multiple generated answers. In the Solver
training phase, the Solver is fine-tuned with GRPO on a filtered set of these challenging questions
generated by the now-frozen Challenger, using the pseudo-labels voted by itself. This entire process
repeats, creating a self-evolving cycle that operates without any human intervention.

Our experiments demonstrate that R-Zero is a model-agnostic framework, consistently and iteratively
improving the reasoning abilities of different backbone LLMs. For example, Qwen3-4B-Base model’s
average score on math benchmarks increased by a significant +6.49 points after three iterations
of self-evolution. Moreover, the reasoning skills learned through our math-focused questions can
generalize to complex general-domain tasks, with models trained using R-Zero showing significant
improvements on general domain reasoning benchmarks like MMLU-Pro (Wang et al., 2024) and
SuperGPQA (Du et al., 2025). Our further analysis finds that R-Zero can act as a mid-training method,
as models first improved by our method achieve higher performance after fine-tuned on labeled data.
In addition, we provide an in-depth analysis that validates our framework’s components, demon-
strates its synergy with supervised fine-tuning, and characterizes the co-evolutionary dynamics to
identify both strengths and limitations, offering insights for future research.

2 Preliminaries

Our work builds upon recent advancements in reinforcement learning for fine-tuning large language
models. We briefly review two key methodologies that are relevant to our framework.

2.1 Group Relative Policy Optimization

Group Relative Policy Optimization (GRPO) (Shao et al., 2024) is a reinforcement learning algorithm
that fine-tunes a policy LLM 7y without a separate, learned value function. Its core idea is to
normalize rewards based on the performance of other responses generated from the same prompt.

R-Zero: Self-Evolving Reasoning LLM from Zero Data) Tencent Al Lab

For a given prompt p, a policy LLM 7tg_, generates a group of G complete responses {x1,...,xg}.
Each response x; is evaluated to receive a single scalar reward r;. The rewards across the group are
then normalized using a z-score to compute a response-level advantage:

A ri —mean(ry,...,7rg)

L Std(1’1,. . .,T’G) + Snorml

where enorm is @ small constant added for numerical stability.

Policy Update. The policy is updated using a clipped surrogate objective, similar to PPO, to ensure
stable training. The objective, regularized by a KL-divergence penalty to constrain policy drift, is:

G
LGRPO(G) = ——= me(ne:zix),') A;, Chp(7y () ,1—¢,1 —‘1-6) Al) + ﬁ KL(TL'@H 7'[901d).
=1

T 1q (%)

Maximizing the negative of this loss encourages the policy to increase the probability of generating
responses with positive relative advantages, while the KL term, controlled by g, limits divergence
from the previous policy.

2.2 Reinforcement Learning with Verifiable Rewards

Reinforcement Learning with Verifiable Rewards (RLVR) (Lambert et al., 2024) is a paradigm for fine-
tuning models in domains where response quality can be deterministically verified. This approach
relies on a rule-based verifier v : X — {0, 1} that assigns a binary reward to each generation x;:

1, if x; satisfies a task-specific correctness check,
ri = Z7(-‘xi) =

0, otherwise.

This reward structure is especially effective for tasks like math, code generation with clear correctness
criteria, and serves as the foundation for the reward mechanism in our Solver training.

3 Method

3.1 Overview

We propose R-Zero, a fully automated framework featuring a Challenger and a Solver, both
initialized from the same base LLM. The framework operates in an iterative loop. We illustrate
the main framework in Figure 2. First, the Challenger (Qp) is trained with Group Relative Policy
Optimization (GRPO) to generate synthetic questions that are challenging for the current Solver
(Sec. 3.2). A training dataset of question-answer pairs is then constructed from these synthetic
questions using a filtering strategy and a majority-vote mechanism (Sec. 3.3). Next, the Solver (Sy)
is fine-tuned on this new dataset, also using GRPO (Sec. 3.4). This iterative process allows the
Challenger and Solver to co-evolve, leading to a progressively more capable Solver. The entire
framework is self-supervised, requiring no human intervention.

3.2 Challenger Training

The Challenger, Qy, is an autoregressive language model trained to generate challenging questions.
We train Qg using the GRPO algorithm detailed in Sec. 2. The core of this process lies in designing
a reward function that accurately captures the desired properties of a “good” question. This
final scalar reward, ;, is then used in the GRPO advantage calculation. We focus on generating
questions specifically within the domain of mathematics, as it provides a convenient and self-
contained setting for our framework; the objective nature of mathematical answers allows for the
straightforward generation of pseudo-labels via majority voting, without the need for external
verification environments like code executors.

R-Zero: Self-Evolving Reasoning LLM from Zero Data) Tencent Al Lab

Update by GRPO with Uncertainty Reward

{yl 1) :'Jl 2- .- Y1, m} m
[OI"I
Challenger Solver vohﬂg
{y@ 1, Yi2- .- Yi, m

Challenger Solver
training training
g — & {v11,910- - 91m} -
| { majori
Challenger Solver —"—Wnoﬁng -
g 7% {vi 1, Y- - Yim}

Update by GRPO
with Filtered Question

Figure 2: An overview of our R-Zero framework, which illustrates the co-evolution of the Challenger
and the Solver. Top: In the Challenger training phase, the Challenger is trained via GRPO to generate
difficult questions. The reward signal is derived from the uncertainty for the frozen Solver, which is
measured by the self-consistency of its multiple generated answers. Bottom: In the Solver training
phase, the Solver is fine-tuned with GRPO on a filtered set of these challenging questions generated
by the now-frozen Challenger, using the pseudo-labels voted by itself.

Uncertainty Reward. To guide the Challenger toward producing challenging yet solvable ques-
tions, we first define an uncertainty score. For a generated question x, we query the current Solver
Sy for m responses {y1, ..., ym }. The most frequent response is treated as the pseudo-label §(x), and
we compute the Solver’s empirical accuracy as p(x; Sy) = % it H{y; = 7(x)}. The uncertainty
reward is then defined as:

runcertainty(X; ¢) =1-2 ﬁ(X; SlP) - %

This function incentivizes questions where the Solver is maximally uncertain (accuracy approaches
50%). We provide a theoretical motivation for this reward function in Sec. 3.5.

Repetition Penalty. To encourage diversity within a training batch X', we introduce a repetition
penalty. We could use any similarity metric, but in our case, we specifically use the BLEU score
for faster computation, as this calculation must be performed numerous times during the rollout
process. We compute pairwise distances using BLEU score similarity, d;; = 1 — BLEU(x;, x;), and
group questions where d;; < Tg gy into clusters C = {Cy,...,Ck}. The penalty for a question x; in a
cluster Cy is proportional to its relative size:

Gl

B

where B is the batch size and A is a scaling factor. In our experiments, we set A = 1. The implemen-
tation details are shown in Appendix A 4.

rrep(xl-) =A

Format Check Penalty. A critical first step in the reward pipeline is a structural format check to
verify that each generated question is correctly enclosed within <question> and </question> tags.
If the output does not adhere to this required structure, it is immediately assigned a final reward of
0, and no further reward signals are computed.

Composite Reward and Policy Update. For all questions that pass the format check, we calculate
a composite reward. The final scalar reward r; for each valid question x; combines signals for
uncertainty and repetition:

rj = max (0/ Tuncertainty (xi/' (P) — Trep (xi))

With these rewards {r1, ..., 7} for a batch of generated questions, we compute the advantage A;
for each question and update the Challenger’s policy Qg by minimizing the GRPO loss Lgrpo ().

R-Zero: Self-Evolving Reasoning LLM from Zero Data) Tencent Al Lab

3.3 Solver Dataset Construction

After updating the Challenger, we use it to generate a new, curated dataset to train the Solver. This
process acts as a curriculum generator. We first sample a large pool of N candidate questions from
the Challenger’s policy, x; ~ Qq(- | po). For each question, we obtain m answers from the current
Solver, determine the pseudo-label fj; via majority vote, and calculate the empirical correctness p;.
A question-answer pair (x;, ;) is added to the training set S only if its correctness falls within an

informative band, |p; — %| < ¢. This filtering step discards tasks that are either too easy or too hard.

While the primary goal of this filtering is to discard tasks that are too easy or too hard, it also serves
as an implicit quality control mechanism. Since our pseudo-labels are derived from a majority vote,
a very low empirical correctness p; often indicates that the question itself is ambiguous, ill-posed,
or that the resulting pseudo-label is unreliable. By filtering out these low-consistency items, our
method simultaneously improves the quality and the uncertainty calibration of the training data.

3.4 Solver Training

The Solver, Sy, is then fine-tuned on the curated dataset of challenging problems S. We also use
GRPO for this stage, but with a simpler, verifiable reward signal. For a given question x; € S with
its pseudo-label 7;, the Solver generates a batch of answers, each assigned a binary reward 7;:

o 1, if X; is identical to the pseudo-label #;,
7710, otherwise.

This verifiable reward is used to compute the advantage A]-, and the Solver’s policy Sy is subse-
quently updated by minimizing the GRPO loss Lgrpo(¢). This process enhances the Solver’s ability
to correctly answer the difficult questions generated by its co-evolving Challenger.

3.5 Theoretical Analysis

In this section, we provide a theoretical motivation for our uncertainty reward function, runcertainty

1 —2|p(x;Sg) — 3|, which is maximized when the Solver’s success probability, p, is 50%. Our
analysis is grounded in recent work that formally establishes that the most efficient training occurs
when a learner is exposed to tasks at the frontier of its capabilities (Shi et al., 2025a; Bae et al., 2025).

The core insight from these studies is that the learning potential of the current Solver, with policy S¢,
can be quantified by the KL divergence to an optimal policy $*. This divergence, Dk (Sy||S*), is
lower-bounded by the variance of the Solver’s reward. For the binary reward signal used in our
framework, the success probability is p. This leads to the specific lower bound:

p(1-)
D (S,|1S*) > L
kL(S9[IST) = =5 B
where f is the temperature parameter controlling entropy regularization. The right-hand side of
the inequality, which is proportional to the reward variance, is maximized precisely when p = 0.5.
Therefore, by designing the Challenger’s reward to incentivize questions that push the current

Solver towards this point of maximum uncertainty, our framework is theoretically motivated to
generate a maximally efficient curriculum in each iteration of the co-evolutionary process.

4 Experiments

4.1 Experiments Setting
411 Models

We employ the Qwen3-4B-Base (Yang et al., 2025) and Qwen3-8B-Base models to assess the impact
of scale within a single architectural family. Second, to ensure our approach is effective on a distinct

R-Zero: Self-Evolving Reasoning LLM from Zero Data) Tencent Al Lab

lineage, we utilize the OctoThinker-3B and OctoThinker-8B models (Wang et al., 2025b).This choice
is particularly relevant as Wang et al. (2025b) reported that applying RL training directly to Llama
models yielded suboptimal results. As the OctoThinker series is continually trained from the Llama-
3.1 models (Dubey et al., 2024), this comprehensive selection allows us to test our framework across
different foundational architectures — Qwen vs. Llama.

4.1.2 Evaluation Benchmark

We assess our framework on a comprehensive suite of benchmarks. Although the question-generator
prompt for our method is primarily focused on mathematical problem-solving, a key objective of
our evaluation is to explore whether the resulting improvements in reasoning ability can generalize
to other domains. Therefore, our evaluation is divided into two main categories.

Mathematical Reasoning. We use seven challenging benchmarks: AMC, Minerva (Lewkowycz
et al., 2022), MATH-500 (Hendrycks et al., 2021b), GSM8K (Cobbe et al., 2021), Olympiad-Bench (He
etal., 2024), AIME-2024, and AIME-2025. For these tasks, where answers can be complex, we employ
GPT-40 as a programmatic judge to semantically verify the correctness of the final answer against
the ground truth (Zhao et al., 2025c¢). For the difficult AMC and AIME benchmarks, we report the
mean@32 metric. For all other math benchmarks, we report accuracy based on greedy decoding.

General Domain Reasoning. To test for the generalization of reasoning ability, we evaluate on the
following challenging benchmarks:

¢ MMLU-Pro (Wang et al., 2024): An enhanced version of the MMLU (Hendrycks et al., 2021a)
benchmark, featuring a more challenging suite of multi-task questions designed to provide
a stricter evaluation of language model capabilities.

* SuperGPQA (Du et al,, 2025): A large-scale benchmark focused on graduate-level reasoning.
It comprises questions across 285 distinct disciplines that have been verified as unsearchable
on the web, thereby isolating true reasoning ability from simple knowledge recall.

* BBEH (shoaa kazemi et al., 2025): This benchmark builds upon the foundation of BIG-Bench
Hard (Suzgun et al., 2023) by incorporating a new selection of tasks specifically engineered
to be more difficult, thus providing a more accurate measure of complex reasoning skills.

For this category, we follow the experimental setup, prompts, and evaluation codes from (Ma et al.,
2025), reporting Exact Match (EM) accuracy obtained via greedy decoding.

4.1.3 Training Details

Our entire framework is implemented based on the EasyR1 codebase (Zheng et al., 2025b). In
each iteration of the R-Zero co-evolutionary loop, we follow a specific set of hyperparameters. The
Challenger (Qp) first generates a candidate pool of N = 8,000 questions. To construct the training
dataset for the Solver, these questions are filtered based on consistency. For each candidate question,
we sample m = 10 answers from the current Solver (Sp). A question is retained for the training
set only if the number of answers matching the majority-vote pseudo-label is between 3 and 7,
inclusive (0 = 0.25). This numerical range is consistent with the methodology used in previous
research (Zhang & Zuo, 2025; Li et al., 2025b; Bercovich et al., 2025). When training the Challenger,
the uncertainty reward r(x; ¢) is calculated by sampling m = 10 responses from the Solver. For
the intra-batch repetition penalty, we set the clustering distance threshold to g gy = 0.5. Further
implementation details and prompts can be found in Appendix A.

4.2 Results in Mathematical Reasoning

The comprehensive results of our experiments are presented in Table 1. The findings confirm that
our proposed framework, R-Zero, is a highly effective, model-agnostic method for enhancing the
performance of language models on mathematical tasks across different architectures and scales.

R-Zero: Self-Evolving Reasoning LLM from Zero Data) Tencent Al Lab

Table 1: Comprehensive results on mathematical reasoning benchmarks. We compare each base
model against a Base Challenger baseline (where the Solver is trained on questions from an un-
trained Challenger) and our iterative method, R-Zero. The peak performance achieved during each
model’s training process is highlighted in bold.

Model Name AVG AMC Minerva MATH GSMSK Olympiad AIME25 AIME24
Quwen3-4B-Base
Base Model 4258 45.70 38.24 68.20 87.79 41.04 6.15 10.94
Base Challenger 44.36 45.00 45.22 72.80 87.87 41.19 7.29 11.15
R-Zero (Iter 1) 48.06 51.56 51.47 78.60 91.28 43.85 9.17 10.52
R-Zero (Iter 2) 4844 5250 51.47 79.80 91.66 44.30 4.27 15.10
R-Zero (Iter 3) 49.07 57.27 52.94 79.60 92.12 44.59 4.27 12.71
Quwen3-8B-Base
Base Model 49.18 5195 50.00 78.00 89.08 44.74 16.67 13.85
Base Challenger 51.87 60.70 57.72 81.60 92.56 46.44 13.44 10.62
R-Zero (Iter 1) 53.39 61.56 59.93 82.00 93.71 48.00 14.17 14.37
R-Zero (Iter 2) 53.84 61.56 59.93 82.00 93.93 48.30 17.60 13.54
R-Zero (Iter 3) 54.69 61.67 60.66 82.00 94.09 48.89 19.17 16.35
OctoThinker-3B
Base Model 26.64 17.19 24.26 55.00 73.69 16.15 0.21 0.00
Base Challenger 27.51 20.19 24.63 54.60 74.98 15.70 0.10 2.40
R-Zero (Iter 1) 27.76 20.39 25.74 54.60 75.51 16.30 0.10 1.67
R-Zero (Iter 2) 2820 24.06 25.37 54.80 74.45 17.48 0.00 1.25
R-Zero (Iter 3) 29.32 27.03 27.57 54.20 74.98 18.22 3.23 0.00
OctoThinker-8B
Base Model 3641 32.11 4191 65.20 86.96 26.52 1.56 0.62
Base Challenger 36.98 29.30 42.28 66.20 88.10 27.56 1.04 4.38
R-Zero (Iter 1) 37.80 3297 45.22 65.60 86.96 28.44 1.98 3.44
R-Zero (Iter 2) 38.23 3258 48.53 67.20 87.11 27.26 0.00 4.90
R-Zero (Iter 3) 38.52 34.03 48.22 68.80 87.19 27.56 0.42 3.44

Our iterative training process consistently and substantially improves upon the performance of the
base models. This holds true for large models like Qwen3-8B-Base, where three iterations of R-Zero
raise the average performance from a baseline of 49.18 to 54.69, a significant gain of +5.51 points.
Similarly, on the smaller OctoThinker-3B, our method improves the average score from 26.64 to
29.32 (+2.68 points), demonstrating the broad applicability of our self-supervised training loop.

This improvement is progressive, with the results showing a clear trend of performance gains across
iterations. For instance, the Qwen3-8B-Base model’s average score climbs from a base performance
of 49.18 to 53.39 (Iter 1) and ultimately reaches 54.69 (Iter 3). A similar monotonic improvement
is observed on OctoThinker-3B, which progresses from its base score of 26.64 to 29.32 after three
iterations. This consistent growth underscores the benefits of the co-evolutionary dynamic, where
the progressively more capable Solver learns from an increasingly challenging curriculum.

The critical role of the Challenger’s RL-based training is validated by the immediate performance
leap from the Base Challenger to the first iteration of R-Zero. On Qwen3-8B-Base, this first iteration
provides a +1.52 point gain over the baseline, and the improvement is even more pronounced
on Qwen3-4B-Base at +3.7 points. This confirms that the intelligent curriculum generated by the
RL-trained Challenger is significantly more effective than that of a non-trained generator.

4.3 Results in General Reasoning

Previous work has demonstrated that training language models on reasoning-intensive domains,
such as mathematics, can lead to improvements in general-domain capabilities (Huan et al., 2025). A

R-Zero: Self-Evolving Reasoning LLM from Zero Data) Tencent Al Lab

Table 2: Results on general-domain reasoning benchmarks. The table compares the Base Model, a
Base Challenger baseline, and our iterative R-Zero. The peak performance achieved during each
model’s training process is highlighted in bold.

Model Name Overall AVG MATH AVG SuperGPQA MMLU-Pro BBEH
Quwen3-4B-Base
Base Model 27.10 42.58 20.88 37.38 7.57
Base Challenger 30.83 44.36 24.77 47.59 6.59
R-Zero (Iter 1) 34.27 48.06 27.92 51.69 9.42
R-Zero (Iter 2) 34.92 48.44 27.72 53.75 9.76
R-Zero (Iter 3) 34.64 49.07 27.55 51.53 10.42
Quwen3-8B-Base
Base Model 34.49 49.18 28.33 51.80 8.63
Base Challenger 36.43 51.87 30.12 54.14 9.60
R-Zero (Iter 1) 37.93 53.39 31.26 57.17 9.91
R-Zero (Iter 2) 38.45 53.84 31.58 58.20 10.20
R-Zero (Iter 3) 38.73 54.69 31.38 58.23 10.60
OctoThinker-3B
Base Model 12.27 26.64 10.09 10.87 1.46
Base Challenger 14.41 27.51 11.19 14.53 4.40
R-Zero (Iter 1) 14.93 27.76 12.21 15.72 4.05
R-Zero (Iter 2) 15.11 28.20 12.43 16.08 3.74
R-Zero (Iter 3) 15.67 29.32 12.44 16.71 4.20
OctoThinker-8B
Base Model 16.81 32.11 13.26 20.21 1.64
Base Challenger 25.08 36.41 16.99 41.46 5.46
R-Zero (Iter 1) 26.44 37.80 19.15 42.05 6.77
R-Zero (Iter 2) 26.77 38.23 19.27 41.34 8.25
R-Zero (Iter 3) 26.88 38.52 19.82 40.92 8.25

key question, however, is whether this generalization effect still holds when the training curriculum
is not human-labeled, but entirely self-generated through R-Zero.

As shown in Table 2, this transfer of skills is evident across all tested models. For instance, three
iterations of our math-focused training improve the average general-domain score of Qwen3-8B-Base
by +3.81 points and OctoThinker-3B by +3.65 points. This generalization also extends to the key
performance patterns observed in the mathematical results, with progressive iterative gains. This
confirms that our method does not merely teach domain-specific knowledge, but enhances the
model’s underlying capabilities in a way that successfully generalizes across domains.

5 Analysis

In this section, we conduct a series of in-depth analyses to better understand the behavior and
effectiveness of our R-Zero framework. To ensure consistency, all analytical experiments presented
here were conducted on the Qwen3-4B-Base model, unless explicitly stated otherwise.

5.1 Ablation Study

To isolate the contribution of each key component within our R-Zero framework, we conduct
a comprehensive ablation study on the Qwen3-4B-Base model. We specifically investigate the
importance of three critical modules by disabling them one at a time and observing the impact on
performance. The results are summarized in Table 3.

R-Zero: Self-Evolving Reasoning LLM from Zero Data) Tencent Al Lab

As shown in the table, removing any core com- Table 3: Ablation study results on the Qwen3-4B-
ponents leads to a significant degradation in Base model. w/o RL-Challenger: Disables GRPO
performance. The largest drop occurs when we training for the Challenger. w/o Filtering: Dis-
disable the Challenger’s reinforcement learn- ables the difficulty-based curriculum filtering. w/o
ing (w/o RL-Challenger), with the Math and Rep. Penalty: Removes the repetition penalty
General average scores decreasing by 3.7 and from the Challenger’s reward.

4.1 points, respectively. This result highlighting

the importance of our co-evolutionary curricu- \ethod Math AVG General AVG
lum generation process. Similarly, removing

the R%petition P£1alty also harms performance, R-Zero (full) 48.06 3041
indicating that generating a diverse set of ques- Ablations

tions is crucial for effective Solver training. - w/o RL-Challenger 44.36 26.32
F w/o Rep. Penalty 45.76 27.56
Finally, disabling the Task Filtering module re- + w/o Filtering 47.35 24.26

sults in a notable performance drop, particularly
on the general-domain average, which falls by over 6 points. As discussed in Section 3.3, this filtering
serves a dual purpose: it calibrates the curriculum’s difficulty and acts as an implicit quality control
mechanism by removing questions with low answer consistency. Without this filter, the Solver is
trained on a noisy and poorly curated dataset that likely includes ambiguous or ill-posed questions,
which harms its ability to learn robustly.

5.2 Evolution of Question Difficulty and Data Accuracy

Table 4: Performance and data accuracy analysis. The highlighted column represents the true
accuracy of the self-generated pseudo-labels for each question set.

Performance of Evaluated Model (vs. Ground Truth)
Base Model Solver (Iter 1) Solver (Iter2) Solver (Iter 3) Pseudo-Label Acc.

Diter 1 48.0 59.0 57.0 61.0 79.0%
Diter 2 525 53.0 51.5 53.5 69.0%
Diter 3 44.0 47.0 45.0 50.5 63.0%

To understand the co-evolutionary dynamic, we analyzed how the Challenger’s generated questions
and their corresponding pseudo-labels change across iterations. We sampled 200 questions from the
Challenger’s policy after each of the first three training iterations, creating three distinct test sets:
Dhiter 1, Diter 2, and Dryier 3. For this analysis, we assumed the external oracle model, GPT-4o, to be a
perfect annotator, providing the ground truth answers for all generated questions.

The evaluation was conducted as follows: the performance of our internal models was measured
against these GPT-40 ground truth answers. The score reported for GPT-4o itself, however, reflects
the true accuracy of our self-generated pseudo-labels by comparing the pseudo label against the
ground truth from the oracle (GPT-40). The results on the filtered dataset are summarized in Table 4.

This analysis reveals a multi-faceted dynamic. The first finding is that the questions generated by
the Challenger become progressively more difficult. This is directly evidenced by evaluating a
fixed model against the evolving question sets. For instance, the performance of the static Solver
(Iter 1), when measured against the consistent GPT-40 ground truth, drops from 59.0% on Iteration
1 questions to 47.0% on Iteration 3 questions. This confirms that the Challenger is successfully
increasing the intrinsic difficulty of its curriculum. The second finding, revealed by the highlighted
column, pertains to the true accuracy of the self-generated dataset. Unfortunately, while the
accuracy of the pseudo-labels is initially high at 79.0%, it systematically drops to 63.0% by the third
iteration. This trend indicates that as the system generates more difficult problems, the Solver’s
majority vote becomes a less reliable source for ground truth. This decline in data quality is a critical
trade-off and a potential bottleneck for the framework’s ultimate performance.

R-Zero: Self-Evolving Reasoning LLM from Zero Data) Tencent Al Lab

Finally, despite this drop in absolute label accuracy, the framework’s internal reward mechanism
functions precisely as designed. The scores on the table’s diagonal show how each Solver performs
on questions from its contemporary Challenger. The Solver (Iter 2) achieves 51.5% and the Solver
(Iter 3) achieves 50.5% on their respective question sets. This demonstrates that the Challenger
successfully calibrates the question difficulty to match the Solver’s evolving capabilities, consistently
targeting the 50% success rate that our reward function incentivizes.

5.3 Synergy with Supervised Data

To analyze the utility of our framework in scenarios where a labeled dataset is available, we measure
the synergy between R-Zero and traditional supervised fine-tuning using labeled datasets!. The
GRPO settings for this experiment were kept identical to our main experiments.

We first establish a supervised baseline by fine-
tuning the base model directly on the labeled
data. For this process, we employ GRPO, an
approach similar to Zero-RL (Zeng et al., 2025).

We then apply our R-Zero framework, where at
the end of each co-evolutionary iteration, the
resulting checkpoint is also fine-tuned on the

same labeled dataset. The results show that our Base Model e Checkpoint Stage. trer 3

method provides significant additional gains. Fjgure 3: Performance of R-Zero when combined
As highlighted in Figure 3, this represents a gain ith supervised fine-tuning. The dashed line rep-
of +2.35 points over the direct training baseline. resents the baseline of fine-tuning the base model
This finding confirms that R-Zero is not redun- ©! labelled de'ata alone, shc'm{i.ng. tha.t our iterative
dant with labeled data; instead, it acts as a pow- method provides a better initialization.

erful performance amplifier. The co-evolutionary process enables the model to better leverage the
supervised information and achieve performance levels unattainable by standard fine-tuning alone.

—=— R-Zero Only
R-Zero + Human Labels

I
IS

Performance (AVG Score)

5.4 Iteration Scaling

Previous results demonstrate that R-Zero generally enhance the Solver’s capabilities across iterations.
A closer inspection, however, reveals that the improvement is not consistent, with performance on
certain challenging benchmarks degrading in later iterations. This raises a critical question about
the long-term stability of our self-improvement loop: what are the limits of this process, and what causes
this eventual performance degradation? In this section, we conduct a dedicated analysis to investigate
these iteration scaling dynamics, aiming to diagnose the underlying cause of this instability.

54.1 The Inevitability of Collapse: An Empirical Analysis

As illustrated in Figure 4, our framework ini-
tially delivers on its promise, with models of
all sizes showing significant performance im-
provements in the early stages of co-evolution.
Unfortunately, this virtuous cycle does not con-
tinue indefinitely. After multiple iterations, we
observe a consistent and concerning trend of
performance degradation across all models. In- Base Iter 1 ter2
triguingly, we found a direct correlation be- Checkpoint version

tween model scale and resilience to this collapse: Figure 4: Math performance across different iter-
the larger the model, the later the onset of per- ation times and model scales. The star markers
formance degradation. indicate the peak performance for each model size.

L

w IS
o o

Performance (AVG Score)
N
o

Ihttps://huggingface.co/datasets/hiyouga/mathi2k

10

https://huggingface.co/datasets/hiyouga/math12k

R-Zero: Self-Evolving Reasoning LLM from Zero Data) Tencent Al Lab

For instance, the smallest 0.6B model reaches its peak performance as early as the first iteration
(Iter 1), after which its capabilities begin to decline. In contrast, the largest 4B model sustains its
upward trajectory for three full iterations, only experiencing a sharp drop at Iter 4. This pattern
strongly suggests that while larger model capacity can delay the negative effects, it does not prevent
them. This eventual collapse points to an inherent instability or limitation within our current
self-improvement framework, highlighting a critical area for future investigation.

5.4.2 Beyond Label Noise: Unpacking the Roots of Instability

The most immediate hypothesis for this performance col- Table 5: Accuracy of self-generated
lapse is the degradation of pseudo-label quality, a po- pseudo-labels (%), labeled by Gemini.
tential failure mode of the self-correction mechanism we Shaded and bolded values indicate the
discussed in Section 5.2. As the Challenger generates best checkpoint for each model size.

increasingly difficult problems, it is plausible that the

Solver’s majority vote becomes a less reliable source for Iteration Model Size
ground truth, resulting in a noisy training signal that 0.6B 1.7B 4B
could ultimately harm performance. To empirically test

the extent to wh}i]ch thiin)s the primary cause,pwe sarr}:pled ﬁg; ; ggg ggi gég
500 questions from a later training iteration to conduct a Tter 3 50'8 52°2 48'8
more granular investigation into the relationship between Tter 4 4 4:0 45:2 42t2

pseudo-label fidelity and the observed performance drop.

Although the degradation of pseudo-label accuracy is a consistent trend across iterations, our analy-
sis suggests this is not the primary, nor even the sole, driver of the eventual performance collapse.
Table 5 presents the pseudo-label data quality for each model at the onset of its performance collapse.
Intriguingly, there appears to be no universal accuracy threshold that triggers this degradation.
For instance, the 0.6B model begins to decline when data accuracy is still as high as 70.6% (Iter 1),
whereas the 4B model tolerates an accuracy as low as 48.8% (Iter 3) before its performance drops.

This suggests that the absolute percentage of label noise is not the sole determinant of instability.
Another potential, and perhaps more fundamental, reason is a form of model collapse that can be
introduced when training exclusively on self-synthesized data (Tan et al., 2024b; Shumailov et al.,
2024; Dohmatob et al., 2024b; Zhou et al., 2025b; Seddik et al., 2024; Dohmatob et al., 2024a; Briesch
et al., 2023; Zheng et al., 2025a). A model can enter a degenerative feedback loop, suffering from a
loss of diversity or an amplification of its own biases, which presents a significant challenge.

5.5 Parameter Sharing Between Challenger and Solver

Table 6: Comparison of math performance and pseudo-label accuracy between the standard R-Zero
(two-model) and Single-R-Zero (unified model, shared parameters) frameworks across iterations.

R-Zero (ours) Single-R-Zero
Iteration Performance Pseudo-label Acc (%) Performance Pseudo-label Acc (%)
Iter 1 48.06 71.0 47.31 63.4
Iter 2 48.44 56.2 46.95 46.6
Iter 3 49.07 48.8 45.57 32.6
Iter 4 46.52 422 43.89 33.8

To investigate whether the separation of the Challenger and Solver into two independent models
is a necessary component for the success of R-Zero, we conduct an ablation study using a unified
model with shared parameters. In this configuration (Single-R-Zero), a single model is tasked with
performing both roles, i.e., generating a challenging curriculum and subsequently learning from it.

The results, presented in Table 6, clearly indicate that separating the Challenger and Solver into two
independent models is crucial for both performance and stability. We observe two key findings. First,
our standard two-model R-Zero framework not only achieves a higher peak performance (49.07) but

11

R-Zero: Self-Evolving Reasoning LLM from Zero Data) Tencent Al Lab

also sustains improvement for more iterations, with its collapse occurring after the third iteration.
In contrast, the unified Single-R-Zero model’s performance peaks after the very first iteration and
degrades immediately thereafter. Second, the Single-R-Zero model, where the agent must generate
and solve its own problems, produces pseudo-labels of significantly lower accuracy at every stage.
For example, in the first iteration, its pseudo-label accuracy is already substantially lower than the
R-Zero’s (63.4% vs. 71.0%). We hypothesize that this is because having the problem-setter and solver
originate from the same model leads to a form of overconfidence that comes from internal bias.

6 Related Work

6.1 Label-Free Reinforcement Learning

A significant trend in recent research is Label-Free Reinforcement Learning, which aims to improve
LLM reasoning without human-annotated data. Many such methods use the model’s own outputs
as a reward signal. This includes leveraging sequence-level confidence (Li et al., 2025a; Prabhudesai
et al.,, 2025), the consistency of answers derived from varied reasoning paths (Zhang et al., 2025a;
Zuo et al., 2025; Zhang et al., 2025b), minimizing the output entropy (Agarwal et al., 2025; Cheng
et al., 2025), or even random (Shao et al., 2025) or negative reward (Zhu et al., 2025). These signals
are often used within self-training loops where models fine-tune on their own most plausible
solutions (Shafayat et al., 2025; Zhao et al., 2025b). While these methods all rely on a pre-existing set
of unlabeled problems, R-Zero removes the need for any seed dataset.

6.2 Self-Play in Large Language Models

The paradigm of self-play, where models take on dual roles to create a self-improvement loop, has
recently been adapted to improve language models without human data. This approach has been
particularly fruitful in verifiable domains like code generation, where a “Coder” agent’s program is
verified by a “Tester” agent’s unit tests (Lin et al., 2025; Wang et al., 2025a; Pourcel et al., 2025). More
advanced frameworks push autonomy further by learning to generate the problems themselves,
creating an adaptive curriculum from a small seed of examples or from scratch (Zhao et al., 2025a;
Li et al., 2025¢; Zhou et al., 2025a; Fang et al., 2025). Our work distinguishes itself by extending this
paradigm to general reasoning domains that lack such verifiable environments, instead learning
from a reward signal derived from the model’s own internal consistency.

6.3 Reinforcement Learning with Verifiable Rewards (RLVR)

Reinforcement Learning with Verifiable Rewards (RLVR) has been widely adopted as a versatile
paradigm for enhancing LLMs across a multitude of tasks. Its effectiveness is demonstrated in
diverse applications such as relation extraction (Dai et al., 2025), interactive GUI navigation (Shi
et al., 2025b) and search-engine utilization (Jin et al., 2025). While early implementations relied on
rule-based verifiers, recent work has begun to explore more sophisticated, model-based verifiers (Ma
et al., 2025; Li et al., 2025b; 2024).

7 Conclusion and Future Work

In this paper, we introduced R-Zero, a fully autonomous self-evolving framework that overcomes
data dependency by having a Challenger and Solver co-evolve to create a self-generating curriculum.
Our experiments demonstrate that R-Zero significantly improves LLM’s reasoning capability on
multiple domains. Future work could further focus on improving efficiency, exploring more robust
labeling techniques, and expanding R-Zero to new domains. It is crucial to note, however, that
the core mechanism of R-Zero is currently suited for domains where correctness can be objectively
determined. Extending this self-evolutionary paradigm to open-ended generative tasks, such as
creative writing or dialogue, where evaluation is subjective, remains a significant hurdle for future
research. We believe R-Zero is a significant step towards creating truly self-evolving LLMs.

12

R-Zero: Self-Evolving Reasoning LLM from Zero Data) Tencent Al Lab

References

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effective-
ness of entropy minimization in llm reasoning. ArXiv preprint, abs/2505.15134, 2025.

Sanghwan Bae, Jiwoo Hong, Min Young Lee, Hanbyul Kim, JeongYeon Nam, et al. Online difficulty
filtering for reasoning oriented reinforcement learning. ArXiv preprint, abs/2504.03380, 2025.

Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, et al. Llama-nemotron:
Efficient reasoning models. ArXiv preprint, abs/2505.00949, 2025.

Martin Briesch, Dominik Sobania, and Franz Rothlauf. Large language models suffer from their own
output: An analysis of the self-consuming training loop. ArXiv preprint, abs/2311.16822, 2023.

Daixuan Cheng, Shaohan Huang, Xuekai Zhu, Bo Dai, Wayne Xin Zhao, et al. Reasoning with
exploration: An entropy perspective. ArXiv preprint, abs/2506.14758, 2025.

Karl Cobbe, Vineet Kosaraju, Mo Bavarian, Mark Chen, Heewoo Jun, et al. Training verifiers to solve
math word problems. ArXiv preprint, abs/2110.14168, 2021.

Runpeng Dai, Tong Zheng, Run Yang, and Hongtu Zhu. R1-re: Cross-domain relationship extraction
with rlvr. ArXiv preprint, abs/2507.04642, 2025.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Jun-Mei Song, et al. Deepseek-r1: Incen-
tivizing reasoning capability in llms via reinforcement learning. ArXiv preprint, abs/2501.12948,
2025.

Elvis Dohmatob, Yunzhen Feng, Arjun Subramonian, and Julia Kempe. Strong model collapse.
ArXiv preprint, abs /2410.04840, 2024a.

Elvis Dohmatob, Yunzhen Feng, Pu Yang, Francois Charton, and Julia Kempe. A tale of tails: Model
collapse as a change of scaling laws. In Forty-first International Conference on Machine Learning,
ICML 2024, Vienna, Austria, July 21-27, 2024, 2024b.

Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, et al. Supergpqa: Scaling llm
evaluation across 285 graduate disciplines. ArXiv preprint, abs/2502.14739, 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, et al.
The llama 3 herd of models. ArXiv preprint, abs/2407.21783, 2024.

Wenkai Fang, Shunyu Liu, Yang Zhou, Kongcheng Zhang, Tongya Zheng, et al. Serl: Self-play rein-
forcement learning for large language models with limited data. ArXiv preprint, abs/2505.20347,
2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, et al. Olympiadbench: A
challenging benchmark for promoting agi with olympiad-level bilingual multimodal scientific
problems. In Annual Meeting of the Association for Computational Linguistics, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In Proc. of ICLR, 2021a.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, et al. Measuring
mathematical problem solving with the math dataset. ArXiv preprint, abs/2103.03874, 2021b.

Maggie Huan, Yuetai Li, Tuney Zheng, Xiaoyu Xu, Seungone Kim, et al. Does math reasoning
improve general llm capabilities? understanding transferability of llm reasoning. 2025.

Chengsong Huang, Langlin Huang, Jixuan Leng, Jiacheng Liu, and Jiaxin Huang. Efficient test-time
scaling via self-calibration. ArXiv preprint, abs/2503.00031, 2025.

13

R-Zero: Self-Evolving Reasoning LLM from Zero Data) Tencent Al Lab

Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. Search-r1:
Training llms to reason and leverage search engines with reinforcement learning. ArXiv preprint,
abs/2503.09516, 2025.

Nathan Lambert, Jacob Daniel Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, et al.
Tiilu 3: Pushing frontiers in open language model post-training. ArXiv preprint, abs/2411.15124,
2024.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay V.
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with
language models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and
A. Oh (eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9,2022,2022.

Pengyi Li, Matvey Skripkin, Alexander Zubrey, Andrey Kuznetsov, and Ivan V. Oseledets. Confi-
dence is all you need: Few-shot rl fine-tuning of language models. ArXiv preprint, abs/2506.06395,
2025a.

Ruosen Li, Ziming Luo, and Xinya Du. Fg-prm: Fine-grained hallucination detection and mitigation
in language model mathematical reasoning. ArXiv preprint, abs/2410.06304, 2024.

Zongxia Li, Yapei Chang, Yuhang Zhou, Xiyang Wu, Zichao Liang, Yoo Yeon Sung, and Jordan Lee
Boyd-Graber. Semantically-aware rewards for open-ended rl training in free-form generation.
ArXiv preprint, abs /2506.15068, 2025b.

Zongxia Li, Xiyang Wu, Guangyao Shi, Yubin Qin, Hongyang Du, Tianyi Zhou, Dinesh Manocha,
and Jordan Lee Boyd-Graber. Videohallu: Evaluating and mitigating multi-modal hallucinations
on synthetic video understanding. ArXiv preprint, abs/2505.01481, 2025¢.

Zi Lin, Sheng Shen, Jingbo Shang, Jason Weston, and Yixin Nie. Learning to solve and verify: A
self-play framework for code and test generation. ArXiv preprint, abs/2502.14948, 2025.

Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, et al. General-reasoner: Advancing
Ilm reasoning across all domains. ArXiv preprint, abs/2505.14652, 2025.

Julien Pourcel, Cédric Colas, and Pierre-Yves Oudeyer. Self-improving language models for evolu-
tionary program synthesis: A case study on arc-agi. 2025.

Mihir Prabhudesai, Lili Chen, Alex Ippoliti, Katerina Fragkiadaki, Hao Liu, et al. Maximizing
confidence alone improves reasoning. ArXiv preprint, abs/2505.22660, 2025.

Mohamed El Amine Seddik, Suei-Wen Chen, Soufiane Hayou, Pierre Youssef, and Mérouane Debbah.
How bad is training on synthetic data? a statistical analysis of language model collapse. ArXiv
preprint, abs/2404.05090, 2024.

Sheikh Shafayat, Fahim Tajwar, Ruslan Salakhutdinov, Jeff Schneider, and Andrea Zanette. Can
large reasoning models self-train? ArXiv preprint, abs/2505.21444, 2025.

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, et al. Spurious rewards: Rethinking
training signals in rlvr. ArXiv preprint, abs/2506.10947, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Jun-Mei Song, et al. Deepseekmath: Pushing the
limits of mathematical reasoning in open language models. ArXiv preprint, abs/2402.03300, 2024.

Taiwei Shi, Yiyang Wu, Linxin Song, Tianyi Zhou, and Jieyu Zhao. Efficient reinforcement finetuning
via adaptive curriculum learning. ArXiv preprint, abs/2504.05520, 2025a.

Yucheng Shi, Wenhao Yu, Zaitang Li, Yonglin Wang, Hongming Zhang, et al. Mobilegui-rl: Advanc-
ing mobile gui agent through reinforcement learning in online environment. 2025b.

14

R-Zero: Self-Evolving Reasoning LLM from Zero Data) Tencent Al Lab

Mehrangiz shoaa kazemi, Bahare Fatemi, Hritik Bansal, John Palowitch, Chrysovalantis Anastasiou,
et al. Big-bench extra hard. In Annual Meeting of the Association for Computational Linguistics, 2025.

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal. Ai
models collapse when trained on recursively generated data. Nature, 631, 2024.

Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi, et al. Crossing the reward bridge: Expanding rl
with verifiable rewards across diverse domains. ArXiv preprint, abs/2503.23829, 2025.

Mirac Suzgun, Nathan Scales, Nathanael Schérli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, and Jason Wei. Challenging BIG-bench
tasks and whether chain-of-thought can solve them. In Anna Rogers, Jordan Boyd-Graber, and
Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics: ACL 2023, 2023.

Zhen Tan, Dawei Li, Song Wang, Alimohammad Beigi, Bohan Jiang, Amrita Bhattacharjee, Man-
sooreh Karami, Jundong Li, Lu Cheng, and Huan Liu. Large language models for data annotation
and synthesis: A survey. In Conference on Empirical Methods in Natural Language Processing, 2024a.

Zhen Tan, Dawei Li, Song Wang, Alimohammad Beigi, Bohan Jiang, Amrita Bhattacharjee, Man-
sooreh Karami, Jundong Li, Lu Cheng, and Huan Liu. Large language models for data annotation
and synthesis: A survey. In Proc. of EMINLP, 2024b.

Zhengwei Tao, Ting-En Lin, Xiancai Chen, Hangyu Li, Yuchuan Wu, et al. A survey on self-evolution
of large language models. ArXiv preprint, abs/2404.14387, 2024.

Yinjie Wang, Ling Yang, Ye Tian, Ke Shen, and Mengdi Wang. Co-evolving Ilm coder and unit tester
via reinforcement learning. ArXiv preprint, abs/2506.03136, 2025a.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
Fan, Xiang Yue, and Wenhu Chen. Mmlu-pro: A more robust and challenging multi-task language
understanding benchmark. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela
Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in Neural Information
Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS
2024, Vancouver, BC, Canada, December 10 - 15, 2024, 2024.

Zengzhi Wang, Fan Zhou, Xuefeng Li, and Pengfei Liu. Octothinker: Mid-training incentivizes
reinforcement learning scaling. ArXiv preprint, abs/2506.20512, 2025b.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, et al. Qwen3 technical report.
ArXiv preprint, abs /2505.09388, 2025.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, et al. Simplerl-zoo: Investigat-
ing and taming zero reinforcement learning for open base models in the wild. ArXiv preprint,
abs/2503.18892, 2025.

Jixiao Zhang and Chunsheng Zuo. Grpo-lead: A difficulty-aware reinforcement learning approach
for concise mathematical reasoning in language models. ArXiv preprint, abs/2504.09696, 2025.

Kongcheng Zhang, Qi Yao, Shunyu Liu, Yingjie Wang, Baisheng Lai, et al. Consistent paths lead to
truth: Self-rewarding reinforcement learning for llm reasoning. ArXiv preprint, abs/2506.08745,
2025a.

Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question
is already half the answer: Fully unsupervised llm reasoning incentivization. ArXiv preprint,
abs/2504.05812, 2025b.

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, et al. Absolute zero: Reinforced self-play
reasoning with zero data. ArXiv preprint, abs/2505.03335, 2025a.

15

R-Zero: Self-Evolving Reasoning LLM from Zero Data) Tencent Al Lab

Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Xiaodong Song. Learning
to reason without external rewards. ArXiv preprint, abs/2505.19590, 2025b.

Yulai Zhao, Haolin Liu, Dian Yu, S. Y. Kung, Haitao Mi, and Dong Yu. One token to fool llm-as-a-
judge. volume abs/2507.08794, 2025c.

Tong Zheng, Lichang Chen, Simeng Han, R Thomas McCoy, and Heng Huang. Learning to reason
via mixture-of-thought for logical reasoning. arXiv preprint arXiv:2505.15817, 2025a.

Yaowei Zheng, Junting Lu, Shenzhi Wang, Zhangchi Feng, Dongdong Kuang, et al. Easyrl: An
efficient, scalable, multi-modality rl training framework. 2025b.

Yifei Zhou, Sergey Levine, Jason E. Weston, Xian Li, and Sainbayar Sukhbaatar. Self-challenging
language model agents. ArXiv preprint, abs/2506.01716, 2025a.

Yujun Zhou, Jiayi Ye, Zipeng Ling, Yufei Han, Yue Huang, Haomin Zhuang, Zhenwen Liang, Kehan
Guo, Taicheng Guo, Xiangqi Wang, et al. Dissecting logical reasoning in llms: A fine-grained
evaluation and supervision study. arXiv preprint arXiv:2506.04810, 2025b.

Xinyu Zhu, Mengzhou Xia, Zhepei Wei, Wei-Lin Chen, Danqi Chen, et al. The surprising effective-
ness of negative reinforcement in llm reasoning. ArXiv preprint, abs/2506.01347, 2025.

Yuxin Zuo, Kaiyan Zhang, Shang Qu, Li Sheng, Xuekai Zhu, et al. Ttrl: Test-time reinforcement
learning. ArXiv preprint, abs/2504.16084, 2025.

16

R-Zero: Self-Evolving Reasoning LLM from Zero Data) Tencent Al Lab

A Experiment Details

A1l Training Hyperparameter

This section summarizes the most critical algorithmic hyperparameters for the Solver and Chal-
lenger training stages. All experiments were conducted using BFloat16 (BF16) mixed precision and
FlashAttention 2.

A.11 Solver Training
¢ Global Batch Size: 128

* Learning Rate: 1 x 107°

* Weight Decay: 1 x 102

KL Penalty Coefficient (Agz): 1 x 1072
* Max Steps: 15

¢ Number of Rollouts: 5

* Rollout Temperature: 1.0

Rollout Top-p: 0.99

A.12 Challenger Training
* Global Batch Size: 128

¢ Learning Rate: 1 x 107°

* Weight Decay: 1 x 102

¢ KL Penalty Coefficient (Agz): 1 X 1072
¢ Max Steps: 5

¢ Number of Rollouts: 4

¢ Rollout Temperature: 1.0

¢ Rollout Top-p: 0.99

A.2 Prompt Templates

This section presents the exact prompt templates used for the solver and challenger models.

Solver Prompt Template

System Message:

Please reason step by step, and put your final answer within \boxed{}.
User Message:

{problem _statement}

Note: {problem_statement} is a placeholder for the actual math problem.

17

R-Zero: Self-Evolving Reasoning LLM from Zero Data O Tencent Al Lab

Challenger Prompt Template

System Message:

You are an expert competition-math problem setter. FIRST, in your private scratch-pad, think
step-by-step to design a brand-new, non-trivial problem. The problem could come from
any field of mathematics, including but not limited to algebra, geometry, number theory,
combinatorics, prealgebra, probability, statistics, and calculus. Aim for a difficulty such that
fewer than 30% of advanced high-school students could solve it. Avoid re-using textbook
clichés or famous contest problems.

THEN, without revealing any of your private thoughts, output exactly the following two
blocks:

<question>
{The full problem statement on one or more lines}
</question>

\boxed{final answer}

Do NOT output anything else—no explanations, no extra markup.

User Message:

Generate one new, challenging reasoning question now. Remember to format the output
exactly as instructed.

A.3 GPT-40 Judge Prompt

To programmatically evaluate the correctness of answers on mathematical benchmarks where the
final answer can be complex (e.g., simplified expressions), we use GPT-40 as a judge. The exact
prompt and configuration used for this evaluation are detailed below.

Configuration for GPT-40 as Judge

* Model: gpt-4o
¢ Temperature: 0.1
System Message:
You are a math answer checker.
User Message Template:

Hi, there is an answer: {answer},

and the ground truth answer is: {response},

please check whether the answer is correct or not, and return the **only**
Yes or No.

Note: {answer} is a placeholder for the model-generated solution, and {response} is the ground-
truth answer from the benchmark.

A.4 Repetition Penalty Implementation

To encourage the Challenger to generate a diverse set of questions within each batch, we apply
a repetition penalty, rrep. This penalty is designed to disincentivize the model from producing
semantically similar questions in the same batch. The implementation is a multi-step process based
on clustering questions by their BLEU score similarity.

18

R-Zero: Self-Evolving Reasoning LLM from Zero Data) Tencent Al Lab

1. Pairwise Distance Calculation via BLEU Score First, we compute a pairwise distance matrix
for all questions in a batch. The distance d;; between any two questions, x; and x;, is defined as one
minus their BLEU score:
dij =1- BLEU(xl-, x])

For this calculation, we specifically use the sentence_bleu function from the NLTK library
(nltk.translate.bleu_score). To ensure numerical stability, especially for shorter questions with
limited n-gram overlap, we employ its first smoothing function, SmoothingFunction() .method1.
The questions are tokenized for the BLEU calculation by splitting on whitespace; no further text
normalization, such as lowercasing or punctuation removal, is performed.

2. Agglomerative Clustering With the pairwise distance matrix computed, we then group similar
questions using agglomerative hierarchical clustering. This step is performed using the Clustering
implementation from the scikit-learn library. The clustering algorithm is configured with the
following key parameters:

® Metric: Set to ’precomputed’, indicating that we provide our custom BLEU-based distance
matrix instead of having the algorithm compute distances.

¢ Linkage: Set to ’average’. This method defines the distance between two clusters as the
average of the distances between all pairs of questions across the two clusters.

3. Final Penalty Calculation Once each question in the batch is assigned to a cluster, the repetition
penalty rrep (x;) for a given question x; is determined by the relative size of the cluster Cy to which it
belongs. The penalty is calculated as:
C
rrep(xi) = | Bk|

Here, |C| represents the number of questions in cluster Cy, and B is the total number of questions in
the batch (i.e., the batch size).

19

	Introduction
	Preliminaries
	Group Relative Policy Optimization
	Reinforcement Learning with Verifiable Rewards

	Method
	Overview
	Challenger Training
	Solver Dataset Construction
	Solver Training
	Theoretical Analysis

	Experiments
	Experiments Setting
	Models
	Evaluation Benchmark
	Training Details

	Results in Mathematical Reasoning
	Results in General Reasoning

	Analysis
	Ablation Study
	Evolution of Question Difficulty and Data Accuracy
	Synergy with Supervised Data
	Iteration Scaling
	The Inevitability of Collapse: An Empirical Analysis
	Beyond Label Noise: Unpacking the Roots of Instability

	Parameter Sharing Between Challenger and Solver

	Related Work
	Label-Free Reinforcement Learning
	Self-Play in Large Language Models
	Reinforcement Learning with Verifiable Rewards (RLVR)

	Conclusion and Future Work
	Experiment Details
	Training Hyperparameter
	Solver Training
	Challenger Training

	Prompt Templates
	GPT-4o Judge Prompt
	Repetition Penalty Implementation

